A geometric model of faulted detachment folding with pure shear and its application in the Tarim Basin, NW China

Zewei YAO , Guangyu HE , Xiaoli ZHENG , Chuanwan DONG , Zicheng CAO , Suju YANG , Yi GU

Front. Earth Sci. ›› 2017, Vol. 11 ›› Issue (2) : 416 -426.

PDF (1447KB)
Front. Earth Sci. ›› 2017, Vol. 11 ›› Issue (2) : 416 -426. DOI: 10.1007/s11707-016-0591-2
RESEARCH ARTICLE
RESEARCH ARTICLE

A geometric model of faulted detachment folding with pure shear and its application in the Tarim Basin, NW China

Author information +
History +
PDF (1447KB)

Abstract

We present an improved geometric model of faulted detachment folding with pure shear that is characterized by core thickening and a ramp-discordant backlimb. The model includes a two-stage evolution: 1) detachment folding involving pure shear with fixed hinges, and 2) faulted detachment folding, in which the core of anticline thrusts above a break-through fault in forelimb by limb rotation. The growth strata patterns of the model are also discussed with respect to factors such as limb rotation, tectonic uplift rate, and sedimentation rate. A thrust-related fold, called a TBE thrust fold, in the Tarim Basin in NW China, is analyzed as an example of the theoretical model. The result indicates that the TBE thrust fold has undergone a two-stage evolution with shortening of a few hundred meters. Both the theoretical model and the actual example indicate that the shortening in the detachment folding stage takes up a large proportion of the total shortening. The structural restoration of the TBE thrust fold also provides new evidence that the formation of a series of thin-skinned structures in the SE Tarim Basin initiated in the Late Ordovician. The model may be applicable to low-amplitude faulted detachment folds.

Keywords

faulted detachment folding / geometric model / pure shear / growth strata / Tarim Basin / shortening

Cite this article

Download citation ▾
Zewei YAO, Guangyu HE, Xiaoli ZHENG, Chuanwan DONG, Zicheng CAO, Suju YANG, Yi GU. A geometric model of faulted detachment folding with pure shear and its application in the Tarim Basin, NW China. Front. Earth Sci., 2017, 11(2): 416-426 DOI:10.1007/s11707-016-0591-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atkinson P KWallace W K (2003). Competent unit thickness variation in detachment folds in the Northeastern Brooks Range, Alaska: geometric analysis and a conceptual model. Journal of Structural Geology25(10): 1751–1771

[2]

Cai X YLi Y (2008). Ordovician lithofacies and stratigraphic lacunae in the southern part of the Central Tarim, Xinjiang. Journal of Stratigraphy32(4): 353–362 (in Chinese)

[3]

Epard J LGroshong R H Jr (1995). Kinematic model of detachment folding including limb rotation, fixed hinges and layer-parallel strain. Tectonophysics247(1‒4): 85–103

[4]

Erslev E AMayborn K R (1997). Multiple geometries and modes of fault-propagation folding in the Canadian thrust belt. Journal of Structural Geology19(3‒4): 321–335

[5]

Fischer M PWoodward N BMitchell M M (1992). The kinematics of break-thrust folds. J Struct Geol14(4): 451–460

[6]

Gonzalez-Mieres RSuppe J (2006). Relief and shortening in detachment folds. Journal of Structural Geology28(10): 1785–1807

[7]

Groshong R HEpard J J (1994). The role of strain in area-constant detachment folding. Journal of Structural Geology16(5): 613–618

[8]

Hardy SPoblet J (1994). Geometric and numerical model of progressive limb rotation in detachment folds. Geology22(4): 371–374

[9]

He B ZJiao C LXu Z QCai Z QLiu S LZhang Y L (2011). Manifestation of the Middle-Late Caledonian tectonic movement along the Altun-West Kunlun orogenic belt in the Tangguzibas depression, Tarim Basin. Yanshi Xuebao27(11): 3435–3448 (in Chinese)

[10]

Homza T XWallace W K (1995). Geometric and kinematic models for detachment folds with fixed and variable detachment depths. J Struct Geol17(4): 575–588

[11]

Hubert-Ferrari ASuppe JGonzalez-Mieres RWang X (2007). Mechanisms of active folding of the landscape (southern Tian Shan, China). Journal of Geophysical Research-Solid Earth112(B3): 485–493

[12]

Jamison W R (1987). Geometric analysis of fold development in overthrust terranes. Journal of Structural Geology9(2): 207–219

[13]

Li H WWu G HShi L LWang BGao L (2013). The structural features and evolution series of Madong thrust belt, west of Tarim Basin. Xingjiang Geology31(3): 180–185 (in Chinese)

[14]

Lin CYang HLiu JRui ZCai ZZhu Y (2012). Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin, Northwest China: significance for the evolution of paleo-uplifts and tectonic geography during deformation. J Asian Earth Sci46(2): 1–19

[15]

Mercier ERafini SAhmadi R (2007). Folds kinematics in “Fold-and-Thrust Belts” the “hinge migration” question, a review. In: Lacombe O, LavéJ, Roure F, Vergés J, eds. Thrust Belts and Foreland Basins: From Fold Kinematics to Hydrocarbon Systems. Berlin: Springer, 135–147

[16]

Mitra S (1990). Fault-propagation folds geometry, kinematic evolution, and hydrocarbon traps. AAPG Bull74(6): 921–945

[17]

Mitra S (2002). Structural models of faulted detachment folds. AAPG Bull86(9): 1673–1694

[18]

Mitra S (2003). A unified kinematic model for the evolution of detachment folds. Journal of Structural Geology25(10): 1659–1673

[19]

Poblet JMcClay KStorti FMunoz J A (1997). Geometries of syntectonic sediments associated with single-layer detachment folds. J Struct Geol19(3‒4): 369–381 doi:10.1016/S0191-8141(96)00113-7

[20]

Ramon GSuppe J (2011). Shortening histories in active detachment folds based on area-of-relief methods. In: McClay K, Shaw J, Suppe J, eds. Thrust Fault-Related Folding, AAPG Memoir 94. Tulsa: AAPG, 39–67

[21]

Ren J YZhang J XYang H ZHu D SLi MZhang Y P (2011). Analysis of fault systems in the Central uplift, Tarim Basin. Yanshi Xuebao27(1): 219–230 (in Chinese)

[22]

Rowan M G (1997). Three-dimensional geometry and evolution of a segmented detachment fold, Mississippi Fan foldbelt, Gulf of Mexico. J Struct Geol19(3‒4): 463–480

[23]

Salvini FStorti F (2002). Three-dimensional architecture of growth strata associated to fault-bend, fault-propagation, and décollement anticlines in non-erosional environments. Sediment Geol146(1–2): 57–73

[24]

Stewart S A (1996). Influence of detachment layer thickness on style of thin-skinned shortening. Journal of Structural Geology18(10): 1271–1274

[25]

Storti FPoblet J (1997). Growth stratal architectures associated to decollement folds and fault-propagation folds. Inferences on fold kinematics. Tectonophysics282(1–4): 353–373

[26]

Suppe J (2011). Mass balance and thrusting in detachment folds. In: McClay K, Shaw J, Suppe J, eds. Thrust Fault-Related Folding, AAPG Memoir 94. Tulsa: AAPG, 21–37

[27]

Suppe JConnors C DZhang Y (2004). Shear fault-bend folding. In: McClay K R, ed. Thrust Tectonics and Hydrocarbon Systems, AAPG Memoir 82. Tulsa: AAPG, 303–323

[28]

Suppe JMedwedeff D A (1990). Geometry and kinematics of fault-propagation folding. Eclogae Geol Helv83(3): 409–454

[29]

Suppe JSabat FMunoz J APoblet JRoca EVerges J (1997). Bed-by-bed fold growth by kink-band migration: Sant Llorenc de Morunys, eastern Pyrenees. Journal of Structural Geology19(3‒4): 443–461

[30]

Tavani SStorti FSalvini F (2006). Double-edge fault-propagation folding: geometry and kinematics. Journal of Structural Geology28(1): 19–35

[31]

Xu Z QLi S TZhang J XYang J SHe B ZLi H BLin C SCai Z H (2011). Paleo-Asian and Tethyan tectonic systems with docking the Tarim block. Yanshi Xuebao27(1): 1–22 (in Chinese)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1447KB)

1510

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/