Late Quaternary rates of stream incision in Northeast Peloponnese, Greece

Efthimios KARYMBALIS , Dimitrios PAPANASTASSIOU , Kalliopi GAKI-PAPANASTASSIOU , Maria FERENTINOU , Christos CHALKIAS

Front. Earth Sci. ›› 2016, Vol. 10 ›› Issue (3) : 455 -478.

PDF (4749KB)
Front. Earth Sci. ›› 2016, Vol. 10 ›› Issue (3) : 455 -478. DOI: 10.1007/s11707-016-0577-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Late Quaternary rates of stream incision in Northeast Peloponnese, Greece

Author information +
History +
PDF (4749KB)

Abstract

This study focuses on defining rates of fluvial incision for the last 580±5 kyr along valley systems of eight streams that drain the eastern part of the northern Peloponnese. The streams are developed on the uplifted block of the offshore-running Xylokastro normal fault, one of the main faults bounding the southern edge of the Gulf of Corinth half-graben, and have incised a set of ten uplifted marine terraces having an amphitheatric shape. These terraces range in age from 60±5 kyr to 580±5 kyr and have been mapped in detail and correlated with late Pleistocene oxygen-isotope stages of high sea-level stands by previous studies. The terraces were used in this paper as reference surfaces in order to define fluvial incision rates at the lower reaches of the studied streams. To evaluate incision rates, thirty-three topographic valley cross-sections were drawn using fieldwork measurements as well as using a highly accurate (2×2 cell size) Digital Elevation Model (DEM) at specific locations where streams cut down the inner edges of the marine terraces. For each cross-section the ratio of valley floor width to valley height (Vf) and long-term mean stream incision rates were estimated for the last 580±5 kyr, while rock uplift rates were estimated for the last 330±5 kyr. The geomorphic evolution of the valleys on the uplifted block of the Xylokastro fault has been mainly driven by the lithology of the bedrock, sea level fluctuations during the late Quaternary, and incision of the channels due to the tectonic uplift. Stream incision rates range from 0.10±0.1 mm/yr for the last 123±7 kyr to 1.14±0.1 mm/yr for the last 310±5 kyr and are gradually greater from east to west depending on the distance from the trace of the fault. Downcutting rates are comparable with the rock uplift rates, which range from 0.4±0.02 mm/yr to 1.49±0.12 mm/yr, over the last 330±5 kyr.

Keywords

fluvial incision / tectonic uplift / marine terraces / Peloponnese / Greece

Cite this article

Download citation ▾
Efthimios KARYMBALIS, Dimitrios PAPANASTASSIOU, Kalliopi GAKI-PAPANASTASSIOU, Maria FERENTINOU, Christos CHALKIAS. Late Quaternary rates of stream incision in Northeast Peloponnese, Greece. Front. Earth Sci., 2016, 10(3): 455-478 DOI:10.1007/s11707-016-0577-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ambraseys N, Jackson J (1997). Seismicity and strain in the Gulf of Corinth (Greece) since 1694. J Earthquake Eng, 1(3): 433–474

[2]

Armijo R, Meyer B, King G, Rigo A, Papanastassiou D (1996). Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophys J Int, 126(1): 11–53

[3]

Avallone A, Briole P, Agatza-Balodimou A M, Billiris H, Charade O, Mitsakaki C, Nercessian A, Papazissi K, Paradissis D, Veis G (2004). Analysis of eleven years of deformation measured by GPS in the Corinth Rift Laboratory area. C R Geosci, 336(4−5): 301–311

[4]

Bell R E, McNeil L C, Bull J M, Henstock T J, Collier R E L, Leeder M R (2009). Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, central Greece. Basin Res, 21(6): 824–855

[5]

Briole P, Rigo A, Lyon-Caen H, Ruegg J C, Papazissi K, Mitsakaki C, Balodimou A, Veis G, Hatzfeld D, Deschamps A (2000). Active deformation of the Corinth Rift, Greece: results from repeated Global Position System surveys between 1990 and 1995. J Geophys Res Solid Earth, 105(B11): 25606–25626

[6]

Brocard G Y, van der Beek P A, Bourles D L, Siame L L, Mugnier J L (2003). Long-term fluvial incision rates and postglacial river relaxation time in the French Western Alps from 10Be dating of alluvial terraces with assessment of inheritance, soil development and wind ablation effects. Earth Planet Sci Lett, 209(1−2): 197–214

[7]

Bull W B, McFadden L D (1977). Tectonic geomorphology north and south of the Garlock Fault, California. In: Doehring D O, ed. Geomorphology in Arid Regions. New York: State University of New York, Binghamton, 115–138

[8]

Burbank D W, Anderson R S (2007). Tectonic Geomorphology. Chelsea: Blackwell Science

[9]

Carcaillet J, Mugnier J L, Koci R, Jouanne F (2009). Uplift and active tectonics of southern Albania inferred from incision of alluvial terraces. Quat Res, 71(3): 465–476

[10]

Chappell J, Shackleton N J (1986). Oxygen isotopes and sea-level. Nature, 324(6093): 137–140

[11]

Chousianitis K, Ganas A, Gianniou M (2013). Kinematic interpretation of present-day crustal deformation in central Greece from continuous GPS measurements. J Geodyn, 71: 1–13

[12]

Clarke P J, Davies R R, England P C, Parsons B, Billiris H, Paradissis D, Veis G, Cross P A, Denys P H, Ashkenazi V, Bingley R, Kahle H G, Muller M V, Briole P (1998). Crustal strain in central Greece from repeated GPS measurements in the interval 1989–1997. Geophys J Int, 135(1): 195–214

[13]

Collier R E L (1990). Eustatic and tectonic controls upon Quaternary coastal sedimentation in the Corinth Basin, Greece. J Geol Soc London, 147(2): 301–314

[14]

Collier R E L, Leeder M R, Rowe R J, Atkinson T C (1992). Rates of tectonic uplift in the Corinth and Megara basins, Central Greece. Tectonics, 11(6): 1159–1167

[15]

Corbi F, Fubelli G, Luca F, Muto F, Pelle T, Robustelli G, Scarciglia F, Dramis F (2009). Vertical movements in the Ionian margin of the Sila Massif (Calabria, Italy). Italian Journal of Geosciences, 128(3): 731–738

[16]

Cucci L (2004). Raised marine terraces in the Northern Calabrian Arc (Southern Italy): a ~ 600 kyr-long geological record of regional uplift. Ann Geophys, 47(4): 1391–1406

[17]

Demoulin A, Beckers A, Hubert-Ferrari A (2015). Patterns of Quaternary uplift of the Corinth rift southern border (N. Peloponnese, Greece) revealed by fluvial landscape morphometry. Geomorphology, 246: 188–204

[18]

Deperet C (1913). Observations sur l’ historique Pliocene et Quaternaire du golfe et de l’ isthme de Corinthe. Comptes Rendus de l'Académie des Sciences Paris, 156: 1048–1052

[19]

Doutsos T, Piper D J W (1990). Listric faulting, sedimentation, and morphological evolution of the Quaternary eastern Corinth rift, Greece: first stages of continental rifting. Geol Soc Am Bull, 102(6): 812–829

[20]

Dufaure J J, Zamanis A (1980). Styles néotectoniques et étagements de niveaux marins sur un segment d’arc insulaire, le Péloponnèse, In: Proccedings of the Conference Niveaux marins et Tectonique Quaternaire dans l’Aire Méditerranéenne. Paris: CNRS, 77–107

[21]

Finnegan N J, Hallet B, Montgomery D R, Zeilter P K, Stone J O, Anders A M, Yuping L (2008). Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet. Geol Soc Am Bull, 120(1/2): 142–155

[22]

Finnegan N J, Schumer R, Finnegan S (2014). A signature of transience in bedrock river incision rates over timescales of 104−107 years. Nature, 505(7483): 391–394

[23]

Florinsky I V (2012). Digital Terrain Analysis in Soil Science and Geology. Amsterdam: Elsevier-Academic Press

[24]

Floyd M A, Billiris H, Paradissis D, Veis G, Avallone A, Briole P, McClusky S, Nocquet J M, Palamartchouk K, Parsons B, England P C (2010). A new velocity field for Greece: implications for the kinematics and dynamics of the Aegean. J Geophys Res, 115(B10 B10403): B10403

[25]

Ford M, Rohais S, Williams E, Bourlange S, Jousselin D, Backert N, Malartre F (2013). Tectono-sedimentary evolution of the western Corinth rift (Central Greece). Basin Res, 25(1): 3–25

[26]

Freyberg B (1973). Geologie des Isthmus von Korinth. Erlanger Geologische Abhandlungen, 95: 1–183

[27]

Gaki-Papanastassiou K, Karymbalis E, Papanastassiou D, Maroukian H (2009). Quaternary marine terraces as indicators of neotectonic activity of the Ierapetra normal fault SE Crete (Greece). Geomorphology, 104(1−2): 38–46

[28]

Gallen S F, Pazzaglia F J, Wegmann K W, Pederson J L, Gardner W (2015). The dynamic reference frame of rivers and apparent transience in incision rates. Geology, 43(7): 623–626

[29]

Gardner T W, Jorgensen D W, Shuman C, Lemieux C R (1987). Geomorphic and tectonic process rates: effects of measured time interval. Geology, 15(3): 259–261

[30]

Harbor D J (1998). Dynamic equilibrium between an active uplift and the Sevier River, Utah. J Geol, 106(2): 181–194

[31]

Haviv I, Enzel Y, Whipple K X, Zilberman E, Matmon A, Stone J, Fifield K L (2010). Evolution of vertical knickpoints (waterfalls) with resistant caprock: insights from numerical modeling. Journal of Geophysical Research – Earth Surface, 115: F03028

[32]

IGME (1970). Geological map of Greece (1:50,000), Nemea sheet

[33]

IGME (1972). Geological map of Greece (1:50,000), Korinthos sheet

[34]

IGME (1982). Geological map of Greece (1:50,000), Kandhila sheet

[35]

IGME (1983). Geological map of Greece (1:500,000)

[36]

IGME (1989). Geological map of Greece (1:50,000), Xylokastro sheet

[37]

Jackson J A, Gagnepain J, Houseman G, King G C P, Papadimitriou P, Soufleris C, Virieux J (1982). Seismicity, normal faulting and the geomorphological development of the Gulf of Corinth (Greece): the Corinth earthquakes of February and march 1981. Earth Planet Sci Lett, 57(2): 377–397

[38]

Kale V S, Shejwalkar N (2008). Uplift along the western margin of the Deccan Basalt Province: is there any geomorphometric evidence? J Earth Syst Sci, 117(6): 959–971

[39]

Katsafados P, Kalogirou S, Papadopoulos A, Mavromatidis E (2009). Cartographic representation of climate spatial variability in Greece. In: Proccedings of the 9th Symposium on Oceanography and Fishery. Patras: HCMR, 439–444

[40]

Keller E A, Pinter N (1996). Active Tectonics: Earthquakes Uplift and Landscapes. New Jersey: Prentice Hall

[41]

Keraudren B, Sorel D (1987). The terraces of Corinth (Greece) – A detailed record of eustatic sea-level variations during the last 500,000 years. Mar Geol, 77(1−2): 99–107

[42]

Kershaw S, Guo L (2001). Marine notches in coastal cliffs: indicators of relative sea-level change, Perachora Peninsula, central Greece. Mar Geol, 179(3−4): 213–228

[43]

Kirby E, Whipple K X (2012). Expression of active tectonics in erosional landscapes. J Struct Geol, 44: 54–75

[44]

Knighton D (1999). Downstream variation in stream power. Geomorphology, 29(3−4): 293–306

[45]

Koukouvelas I, Katsonopoulou D, Soter S, Xypolias P (2005). Slip rates on the Helike Fault, Gulf of Corinth, Greece: new evidence from geoarchaeology. Terra Nova, 17(2): 158–164

[46]

Kraal R (1999). Bedrock incision and knickpoint processes in streams along an uplifting coast, southern Península de Nicoya, Costa Rica. In: Mendelson C V, Mankiewicz C, eds. Proceedings Twelfth Keck Research Symposium in Geology. Northfield, Minnesota: Keck Geology Consortium, 188–191

[47]

Lavé J, Avouac J P (2001). Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J Geophys Res Solid Earth, 106(B11): 26561–26591

[48]

Leeder M R, McNeill L C, Collier R E L, Portman C, Rowe P J, Andrews J E, Gawthorpe L (2003). Corinth rift margin uplift: new evidence from Late Quaternary marine shorelines. Geophysical Research Letters, 30/12: 13-1 –13-4

[49]

Leeder R, Mark F, Gawthorpe L, Kranis H, Loveless S, Pedentchouk N, Skourtsos E, Turner J, Andrews E, Stamatakis M (2012). A “Great Deepening”: chronology of rift climax, Corinth rift, Greece. Geology, 40(11): 999–1002

[50]

Leeder R, Portman C, Andrews E, Collier R, Finch E, Gawthorpe L, McNeill L, Pérez-Arlucea M, Rowe P (2005). Normal faulting and crustal deformation, Alkyonides Gulf and Perachora peninsula, eastern Gulf of Corinth rift, Greece. J Geol Soc London, 162(3): 549–561

[51]

Leland J, Reid M R, Burbank D W, Finkel R, Caffee M (1998). Incision and differential bedrock uplift along the Indus River near Nanga Parbat, Pakistan Himalaya, from 10Be and 26 Al exposure age dating of bedrock straths. Earth Planet Sci Lett, 154(1−4): 93–107

[52]

Maroukian H, Gaki-Papanastassiou K, Karymbalis E, Vouvalidis K, Pavlopoulos K, Papanastassiou D, Albanakis K (2008). Morphotectonic control on drainage network evolution in the Perachoora Peninsula, Greece. Geomorphology, 102(1): 81–92

[53]

Maroukian H, Gaki-Papanastassiou K, Papanastassiou D (1997). Coastal changes in thebroader area of Corinth, Greece. American School of Oriental Research. Archaeol Rep, 04: 217–226

[54]

Marquardt C, Lavenu A, Ortlieb L, Godoy E, Comte D (2004). Coastal neotectonics in Southern Central Andes: uplift and deformation of marine terraces in Northern Chile (27?S). Tectonophysics, 394(3−4): 193–219

[55]

McNeill L C, Collier R E L (2004). Uplift and slip rates of the eastern Eliki fault segment, Gulf of Corinth, Greece, inferred from Holocene and Pleistocene terraces. J Geol Soc London, 161(1): 81–92

[56]

Merritts D, Bull W B (1989). Interpreting Quaternary uplift rates at the Mendocino triple junction, northern California, from uplifted marine terraces. Geology, 17: 1020–1024

[57]

Merritts D, Vincent K R (1989). Geomorphic response of coastal streams to low, intermediate, and high rates of uplift, Medocino triple junction region, northern California. Geol Soc Am, 101(11): 1373–1388

[58]

Merritts D, Vincent K, Wohl E E (1994). Long river profiles, tectonism, and eustacy: a quide to interpreting fluvial terraces. J Geophys Res, 99(B7): 14,031–14,050

[59]

Morewood N, Roberts G (1999). Lateral propagation of the surface trace of the south Alkyonides normal fault segment, central Greece: its impact on models of fault growth and displacement–length relationships. J Struct Geol, 21(6): 635–652

[60]

Murray-Wallace C V, Woodroffe C D (2014). Quaternary Sea-Level Changes: A Global Perspective. New York: Cambridge University Press

[61]

Palyvos N, Mancini M, Sorel D, Lemeille F, Pantosti D, Julia R, Triantaphyllou M, De Martini P (2010). Geomorphological, stratigraphic and geochronological evidence of fast Pleistocene coastal uplift in the westernmost part of the Corinth Gulf Rift (Greece). Geol J, 45(1): 78–104

[62]

Papageorgiou S, Arnold M, Laborel J, Stiros S (1993). Seismic uplift of the harbour of ancient Aigeira, Central Greece. Int J Naut Archaeol, 22(3): 275–281

[63]

Pavlides S, Caputo R (2004). Magnitude versus faults’ surface parameters: quantitative relationships from the Aegean Region. Tectonophysics, 380(3−4): 159–188

[64]

Pazzaglia F, Brandon M (2001). A fluvial record of long-term steady-state uplift and erosion across the Cascadia forearc high, western Washington State. Am J Sci, 301(4−5): 385–431

[65]

Pillans B (1990). Pleistocene marine terraces in New Zealand: a review. NZ J Geol Geophys, 33(2): 219–231

[66]

Pirazzoli P, Stiros S, Fontugne M, Arnold M (2004). Holocene and Quaternary uplift in the central part of the southern coast of the Corinth Gulf (Greece). Mar Geol, 212(1−4): 35–44

[67]

Proença Cunha P, Antunes Martins A, Daveau S, Friend P F (2005). Tectonic control of the Tejo river fluvial incision during the late Cenozoic, in Rodao-central Poerugal (Atlantic Iberian border). Geomorphology, 64(3−4): 271–298

[68]

Rigo A, Lyon-Caen H, Armijo R, Deschamps A, Hatzfeld D, Makropoulos K, Papadimitriou P, Kassaras I (1996). A microseismic study in the western part of the Gulf of Corinth (Greece): implications for large-scale normal faulting mechanisms. Geophys J Int, 126(3): 663–688

[69]

Robustelli G, Luca F, Corbi F, Pelle T, Dramis F, Fubelli G, Scarciglia F, Muto F, Cugliari D (2009a). Alluvial terraces on the Ionian coast od northern Calabria, southern Italy: implications for tectonic and sea level controls. Geomorphology, 106(3−4): 165–179

[70]

Robustelli G, Luca F, Corbi F, Fubelli G, Scarciglia F, Dramis F (2009b). Geomorphological map of the Ionian area between the Trionto and Colognati River catchments (Calabria, Italy). J Maps, 5(1): 94–102

[71]

Rohais S, Eschard R, Guillocheau F (2008). Depositional model and stratigraphic architecture of rift climax Gilbert- type fan deltas (Gulf of Corinth, Greece). Sediment Geol, 210(3−4): 132–145

[72]

Rostami K, Peltier W R, Mangini A (2000). Quaternary marine terraces, sea-level changes and uplift history of Patagonia, Argentina: comparisons with predictions of the ICE-4G (VM2) model of the global process of glacial isostatic adjustment. Quat Sci Rev, 19(14−15): 1495–1525

[73]

Sebrier M (1977). Tectonique récente d’une transversale a l’Arc Egéen: le Golfe de Corinthe et ses régions périphériques. Thèse 3eme cycle, Univ. Paris-Sud: France

[74]

Seong Y B, Owen A, Bishop M P, Bush A, Clendon P, Copland L, Finkel R C, Kamp U, Shroder J F Jr (2008). Rates of fluvial bedrock incision within an actively uplifting orogen: Central Karakoram Mountains, northern Pakistan. Geomorphology, 97(3−4): 274–286

[75]

Stewart I S (1996). Holocene uplift and palaeoseismicity on the Eliki fault, western gulf of Corinth. Ann Geofis, 39: 575–588

[76]

Stewart S, Vita-Finzi C (1996). Coastal uplift on active normal faults: the Eliki Fault, Greece. Geophys Res Lett, 23(14): 1853–1856

[77]

Syndera N P, Whipple K X, Tucker G E, Merritts D J (2003). Channel response to tectonic forcing: field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California. Geomorphology, 53(1−2): 97–127

[78]

Turner J A, Leeder M R, Andrews J E, Rowe P J, Van Calsteren P, Thomas L (2010). Testing rival tectonic uplift models for the Lechaion Gulf in the Gulf of Corinth rift. J Geol Soc London, 167(6): 1237–1250

[79]

Valensise G, Pantosti D (1992). A 125 kyr-long geological record of seismic source repeatability: the Messina Straights (southern Italy) and the 1908 earthquake (Ms 7.5). Terra Nova, 4(4): 472–483

[80]

Vita-Finzi C, King G C P (1985). The seismicity, geomorphology and structural evolution of the Corinth area of Greece. Philos Trans R Soc Lond, 314(1530): 379–407

[81]

Wakabayashi J, Sawyer T (2001). Stream incision, tectonics, uplift, and evolution of topography of the Sierra Nevada, California. The Journal of Geology, 109: 539–562

[82]

Westeway R (2002). The Quaternary evolution of the Gulf of Corinth, central Greece: coupling between surface processes and flow in the lower continental crust. Tectonophysics, 348: 269–318

[83]

Whipple K X (2001). Fluvial landscape response time: how plausible is steady-state denudation? Am J Sci, 301(4−5): 313–325

[84]

Whipple K X, Tucker G E (1999). Dynamics of the stream power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J Geophys Res, 104(B8): 17661–17674

[85]

Zazo C, Goy J L, Dabrio C J, Bardají T, Hillaire-Marcel C, Ghaleb B, González-Delgado J Á, Soler V (2003). Pleistocene raised marine terraces of the Spanish Mediterranean and Atlantic coasts: records of coastal uplift, sea-level highstands and climate changes. Mar Geol, 194(1–2): 103–133

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (4749KB)

1456

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/