Global consistency check of AIRS and IASI total CO2 column concentrations using WDCGG ground-based measurements

Anyuan DIAO, Jiong SHU, Ci SONG, Wei GAO

PDF(1094 KB)
PDF(1094 KB)
Front. Earth Sci. ›› 2017, Vol. 11 ›› Issue (1) : 1-10. DOI: 10.1007/s11707-016-0573-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Global consistency check of AIRS and IASI total CO2 column concentrations using WDCGG ground-based measurements

Author information +
History +

Abstract

This article describes a global consistency check of CO2 satellite retrieval products from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) using statistical analysis and data from the World Data Centre for Greenhouse Gases (WDCGG). We use the correlation coefficient (r), relative difference (RD), root mean square errors (RMSE), and mean bias error (MBE) as evaluation indicators for this study. Statistical results show that a linear positive correlation between AIRS/IASI and WDCGG data occurs for most regions around the world. Temporal and spatial variations of these statistical quantities reflect obvious differences between satellite-derived and ground-based data based on geographic position, especially for stations near areas of intense human activities in the Northern Hemisphere. It is noteworthy that there appears to be a very weak correlation between AIRS/IASI data and ten ground-based observation stations in Europe, Asia, and North America. These results indicate that retrieval products from the two satellite-based instruments studied should be used with great caution.

Keywords

CO2 / consistency check / AIRS / IASI / WDCGG

Cite this article

Download citation ▾
Anyuan DIAO, Jiong SHU, Ci SONG, Wei GAO. Global consistency check of AIRS and IASI total CO2 column concentrations using WDCGG ground-based measurements. Front. Earth Sci., 2017, 11(1): 1‒10 https://doi.org/10.1007/s11707-016-0573-4

References

[1]
Aumann H H, Chahine M T, Gautier C, Goldberg M D, Kalnay E, McMillin L M, Revercomb H, Rosenkranz P W, Smith W L, Staelin D H, Strow L L, Susskind J (2003). AIRS/AMSU/HSB on the aqua mission: design, science objectives, data products, and processing systems. IEEE Trans Geosci Rem Sens, 41(2): 253–264
CrossRef Google scholar
[2]
Bai W G, Zhang X Y, Zhang P (2010). Temporal and spatial distribution of tropospheric CO2 over China based on satellite observations. Chin Sci Bull, 55(31): 3612–3618
CrossRef Google scholar
[3]
Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Chance K V, Goede A P H (1999). SCIAMACHY: mission objectives and measurement modes. J Atmos Sci, 56(2): 127–150
CrossRef Google scholar
[4]
Buchwitz M, de Beek R D, Burrows J P, Bovensmann H, Warneke T, Notholt J, Meirink J F, Goede A P H, Bergamaschi P, Körner S, Heimann M, Schulz A (2005a). Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models. Atmos Chem Phys, 5(4): 941–962
CrossRef Google scholar
[5]
Buchwitz M, de Beek R, Noël S, Burrows J P, Bovensmann H, Bremer H, Bergamaschi P, Körner S, Heimann M (2005b). Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: year 2003 initial data set. Atmos Chem Phys, 5(12): 3313–3329
CrossRef Google scholar
[6]
Butz A, Hasekamp O P, Frankenberg C, Aben I (2009). Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects. Appl Opt, 48(18): 3322–3336
CrossRef Google scholar
[7]
Chahine M, Barnet C, Olsen E T, Chen L, Maddy E (2005). On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2. Geophys Res Lett, 32(22): L22803
CrossRef Google scholar
[8]
Chalon G, Cayla F, Diebel D (2001). IASI: an advanced sounder for operational meteorology. In IAF, International Astronautical Congress, 52 nd, Toulouse, France
[9]
Christi M J, Stephens G L (2004). Retrieving profiles of atmospheric CO2 in clear sky and in the presence of thin cloud using spectroscopy from the near and thermal infrared: a preliminary case study. Journal of Geophysical Research: Atmospheres (1984–2012), 109(D4)
[10]
Gerbig C, Lin J C, Wofsy S C, Daube B C, Andrews A E, Stephens B B, Bakwin P S, Grainger C A (2003). Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 1. Observed spatial variability from airborne platforms. J Geophys Res, D, Atmospheres, 108(D24): 4756
CrossRef Google scholar
[11]
Grieco G, Masiello G, Matricardi M, Serio C (2013). Partially scanned interferogram methodology applied to IASI for the retrieval of CO, CO2, CH4 and N2O. Opt Express, 21(21): 24753–24769
CrossRef Google scholar
[12]
Hilton F, Armante R, August T, Barnet C, Bouchard A, Camy-Peyret C, Capelle V, Clarisse L, Clerbaux C, Coheur P F, Collard A, Crevoisier C, Dufour G, Edwards D, Faijan F, Fourrié N, Gambacorta A, Goldberg M, Guidard V, Hurtmans D, Illingworth S, Jacquinet-Husson N, Kerzenmacher T, Klaes D, Lavanant L, Masiello G, Matricardi M, McNally A, Newman S, Pavelin E, Payan S, Péquignot E, Peyridieu S, Phulpin T, Remedios J, Schlüssel P, Serio C,Strow L, Stubenrauch C, Taylor J, Tobin D, Wolf W, Zhou D (2012). Hyperspectral earth observation from IASI: five years of accomplishments. Bull Am Meteorol Soc, 93(3): 347–370
CrossRef Google scholar
[13]
IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151
[14]
Kuang Z, Margolis J, Toon G, Crisp D, Yung Y (2002). Space borne measurements of atmospheric CO2 by high-resolution NIR spectrometry of reflected sunlight: an introductory study. Geophys Res Lett, 29(15): 11-1–11-4
CrossRef Google scholar
[15]
Kuze A, Suto H, Nakajima M, Hamazaki T (2009). Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl Opt, 48(35): 6716–6733
CrossRef Google scholar
[16]
Maddy E S, Barnet C D, Goldberg M, Sweeney C, Liu X (2008). CO2 retrievals from the atmospheric infrared sounder: methodology and validation. J Geophys Res, D, Atmospheres, 113(D11): D11301
CrossRef Google scholar
[17]
O’Dell C W, Connor B, Bösch H, O’Brien D, Frankenberg C, Castano R, Christi M, Eldering D, Fisher B, Gunson M, McDuffie J, Miller C E, Natraj V, Oyafuso F, Polonsky I, Smyth M, Taylor T, Toon G C, Wennberg P O, Wunch D (2012). The ACOS CO2 retrieval algorithm–Part 1: description and validation against synthetic observations. Atmos Meas Tech, 5(1): 99–121
CrossRef Google scholar
[18]
Olsen E T (2009). AIRS Version 5 Release Tropospheric CO2 Products. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
[19]
Olsen E T, Fishbein E, Granger S, Lee S Y, Manning E, Weiler M, Blaisdell J, Susskind J. (2007). AIRS/AMSU/HSB Version 5 Data Release User Guide
[20]
Olsen S C, Randerson J T (2004). Differences between surface and column atmospheric CO2 and implications for carbon cycle research. Journal of Geophysical Research: Atmospheres (1984–2012), 109(D2)
[21]
Phulpin T, Cayla F, Chalon G, Diebel D, Schlüssel P (2002). IASI on board Metop: project status and scientific preparation. In 12th International TOVS Study Conference, Lorne, Victoria, Australia (Vol. 26)
[22]
Schlüssel P, Hultberg T H, Phillips P L, August T, Calbet X (2005). The operational IASI level 2 processor. Adv Space Res, 36(5): 982– 988
CrossRef Google scholar
[23]
Tiwari Y K, Gloor M, Engelen R J, Chevallier F, Rödenbeck C, Körner S, Peylin P, Braswell B H, Heimann M (2006). Comparing CO2 retrieved from Atmospheric Infrared Sounder with model predictions: implications for constraining surface fluxes and lower-to-upper troposphere transport. J Geophys Res, D, Atmospheres, 111(D17): D17106
CrossRef Google scholar
[24]
Wang T, Shi J, Jing Y, Xie Y (2012). Investigation of the consistency of atmospheric CO2 retrievals from different space-based sensors: intercomparison and spatiotemporal analysis. Chin Sci Bull, 58(33): 4161–4170
CrossRef Google scholar
[25]
WMO GAW Report No. 161 (2005). 12th WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and Related Tracers Measurement Techniques.Geneva: World Meteorological Organization
[26]
Zhou C, Shi R, Liu C, Gao W (2013). A correlation analysis of monthly mean CO2 retrieved from the Atmospheric Infrared Sounder with surface station measurements. Int J Remote Sens, 34(24): 8710–8723
CrossRef Google scholar
[27]
Zhou M, Shu J, Song C, Gao W (2014). Sensitivity studies for atmospheric carbon dioxide retrieval from atmospheric infrared sounder observations.Journal of Applied Remote Sensing, 8: 083697-2–083697-16

Acknowledgements

This project was supported by the National Basic Research Program of China (No. 2010CB951603) and the Major Program of National Social Science Foundation of China (No.13&ZD161). We thank Prof. Jietai Mao of the Department of Atmospheric & Oceanic Sciences, Peking University, China for providing expert advice and assistance. We also thank the WDCGG for providing the CO2 data. Many thanks to NASA for providing AIRS CO2 data and NOAA for providing IASI CO2 data.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1094 KB)

Accesses

Citations

Detail

Sections
Recommended

/