Satellite remote sensing of the island mass effect on the Sub-Antarctic Kerguelen Plateau, Southern Ocean

Babula JENA

PDF(1467 KB)
PDF(1467 KB)
Front. Earth Sci. ›› 2016, Vol. 10 ›› Issue (3) : 479-486. DOI: 10.1007/s11707-016-0561-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Satellite remote sensing of the island mass effect on the Sub-Antarctic Kerguelen Plateau, Southern Ocean

Author information +
History +

Abstract

The presence of the Kerguelen Plateau and surrounding bathymetric features has a strong influence on the persistently eastward flowing Antarctic Circumpolar Current (ACC), resulting in enhancement of surface chlorophyll-a (Chl-a) in the downstream section of the plateau along the polar front (PF). The phenomenon is reported in this paper as the island mass effect (IME). Analysis of climatological Chl-a datasets from Aqua-Moderate Resolution Imaging Spectroradiometer (Aqua-MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) shows distinct bloomy plumes (Chl-a>0.5 mg/m3) during austral spring-summer spreading as far as ~1800 km offshore up to 98°E along the downstream of the north Kerguelen Plateau (NKP). Similar IME phenomena is apparent over the south Kerguelen Plateau (SKP) with the phytoplankton bloom extending up to 96.7°E, along the southern boundary of ACC. The IME phenomena are pronounced only during austral spring-summer period with the availability of light and sedimentary source of iron from shallow plateau to sea surface that fertilizes the mixed layer. The NKP bloom peaks with a maximum areal extent of 1.315 million km2 during December, and the SKP bloom peaks during January with a time lag of one month. The blooms exist for at least 4 months of a year and are significant both as the base of regional food web and for regulating the biogeochemical cycle in the Southern Ocean. Even though the surface water above the Kerguelen Plateau is rich in Chl-a, an exception of an oligotrophic condition dominated between NKP and SKP due to apparent intrusion of iron limited low phytoplankton regime waters from the Enderby basin through the north-eastward Fawn Trough Current.

Keywords

island mass effect / Antarctic Circumpolar Current / Aqua-MODIS / SeaWiFS

Cite this article

Download citation ▾
Babula JENA. Satellite remote sensing of the island mass effect on the Sub-Antarctic Kerguelen Plateau, Southern Ocean. Front. Earth Sci., 2016, 10(3): 479‒486 https://doi.org/10.1007/s11707-016-0561-8

References

[1]
Aoki S, Fujii N, Ushio S, Yoshikawa Y, Watanabe S, Mizuta G, Fukamachi Y, Wakatsuchi M (2008). Deep western boundary current and southern frontal systems of the Antarctic Circumpolar Current southeast of the Kerguelen Plateau. J Geophys Res, 113(C8): C08038
CrossRef Google scholar
[2]
Bakker D C E, Nielsdóttir M C, Morris P J, Venables H J, Watson A J (2007). The island mass effect and biological carbon uptake for the subantarctic Crozet Archipelago. Deep Sea Res Part II Top Stud Oceanogr, 54(18‒20): 2174–2190
CrossRef Google scholar
[3]
Blain S, Quéguiner B, Armand L, Belviso S, Bombled B, Bopp L, Bowie A, Brunet C, Brussaard C, Carlotti F, Christaki U, Corbière A, Durand I, Ebersbach F, Fuda J L, Garcia N, Gerringa L, Griffiths B, Guigue C, Guillerm C, Jacquet S, Jeandel C, Laan P, Lefèvre D, Lo Monaco C, Malits A, Mosseri J, Obernosterer I, Park Y H, Picheral M, Pondaven P, Remenyi T, Sandroni V, Sarthou G, Savoye N, Scouarnec L, Souhaut M, Thuiller D, Timmermans K, Trull T, Uitz J, van Beek P, Veldhuis M, Vincent D, Viollier E, Vong L, Wagener T (2007). Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature, 446(7139): 1070–1074
CrossRef Google scholar
[4]
Boyd P W, Crossley A C, DiTullio G R, Griffiths F B, Hutchins D A, Queguiner B, Sedwick P N, Trull T W (2001). Control of phytoplankton growth by iron supply and irradiance in the subantarctic Southern Ocean: experimental results from the SAZ project. J Geophys Res, 106(C12):31573–31583
CrossRef Google scholar
[5]
Boyd P W, Jickells T, Law C S, Blain S, Boyle E A, Buesseler K O, Coale K H, Cullen J J, de Baar H J W, Follows M, Harvey M, Lancelot C, Levasseur M, Owens N P J, Pollard R, Rivkin R B, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson A J (2007). Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science, 315(5812): 612–617
CrossRef Google scholar
[6]
Boyd P W, Watson A J, Law C S, Abraham E R, Trull T, Murdoch R, Bakker D C E, Bowie A R, Buesseler K O, Chang H, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, LaRoche J, Liddicoat M, Ling R, Maldonado M T, McKay R M, Nodder S, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner S, Waite A, Zeldis J (2000). A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407(6805): 695–702
CrossRef Google scholar
[7]
Bucciarelli E, Blain S, Tréguer P (2001). Iron and manganese in the wake of the Kerguelen Islands (Southern Ocean). Mar Chem, 73: 21–36
CrossRef Google scholar
[8]
Caldeira R M A, Groom S, Miller P, Pilgrim D, Nezlin N P (2002). Sea-surface signatures of the island mass effect phenomena around Madeira Island, Northeast Atlantic. Remote Sens Environ, 80(2): 336–360
CrossRef Google scholar
[9]
Coale K, Johnson K, Chavez F, Buesseler K, Barber R, Brzezinski M, Cochlan W, Millero F, Falkowski P, Bauer J, Wanninkhof R, Kudela R, Altabet M, Hales B, Takahashi T, Landry M, Bidigare R, Wang X, Chase Z, Strutton P, Friederich G, Gorbunov M, Lance V, Hilting A, Hiscock M, Demarest M, Hiscock W, Sullivan K, Tanner S, Gordon R, Hunter C, Elrod V, Fitzwater S, Jones J, Tozzi S, Koblizek M, Roberts A, Herndon J, Brewster J, Ladizinsky N, Smith G, Cooper D, Timothy D, Brown S, Selph K, Sheridan C, Twining B, Johnson Z (2004). Southern Ocean Iron Enrichment Experiment (SOFeX): carbon cycling in high- and low-Si waters. Science, 304(5669): 408–414
CrossRef Google scholar
[10]
Coale K H, Johnson K S, Fitzwater S E, Gordon R M, Tanner S, Chavez F P, Ferioli L, Sakamoto C, Rogers P, Millero F, Steinberg P, Nightingale P, Cooper D, Cochlan W P, Landry M R, Constantinou J, Rollwagen G, Trasvina A, Kudela R (1996). A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 383(6600): 495–501
CrossRef Google scholar
[11]
De Baar H J W, de Jong J T M, Bakker D C E, Loscher B M, Veth C, Bathmann U, Smetacek V (1995). Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature, 373(6513): 412–415
CrossRef Google scholar
[12]
Donohue K A, Hufford G E, McCartney M S (1999). Sources and transport of the deep western boundary current east of the Kerguelen Plateau. Geophys Res Lett, 26(7): 851–854
CrossRef Google scholar
[13]
Doty M S, Oguri M (1956). The island mass effect. Journal of the International Council for the Exploration of the Sea, 22: 33–37
[14]
Fitch D T, Moore J K (2007). Wind speed influence on phytoplankton bloom dynamics in the Southern Ocean Marginal Ice Zone. J Geophys Res, 112(C8): C08006
CrossRef Google scholar
[15]
Gall M P, Boyd P W, Hall J, Safi K A, Chang H (2001). Phytoplankton processes: Part I. community structure during the Southern Ocean Iron Release Experiment (SOIREE). Deep Sea Res Part II Top Stud Oceanogr, 48(11‒12): 2551–2570
CrossRef Google scholar
[16]
Gordon R M, Coale K H, Johnson K S (1997). Iron distributions in the equatorial Pacific: implications for new production. Limnol Oceanogr, 42(3): 419–431
CrossRef Google scholar
[17]
Grotti M, Soggia F, Ianni C, Frache R (2005). Trace metals distributions in coastal sea ice of Terra Nova Bay, Ross Sea, Antarctica. Antarct Sci, 17(2): 289–300
CrossRef Google scholar
[18]
Heywood K J, Barton E D, Simpson J H (1990). The effects of flow disturbance by an oceanic island. J Mar Res, 48(1): 55–73
CrossRef Google scholar
[19]
Heywood K J, Stevens D P, Bigg G R (1996). Eddy formation behind the tropical island of Aldabra. Deep Sea Res Part I Oceanogr Res Pap, 43(4): 555–578
CrossRef Google scholar
[20]
Jena B, Kurian P J, Swain D, Tyagi A, Ravindra R (2012). Prediction of bathymetry from satellite altimeter based gravity in the Arabian Sea: mapping of two unnamed deep seamounts. Int J Appl Earth Obs Geoinf, 16: 1–4
CrossRef Google scholar
[21]
Jena B, Rao M V, Sahu B K (2006). TRMM derived sea surface temperature in the wake of a cyclonic storm over the central Bay of Bengal. Int J Remote Sens, 27(14): 3065–3072
CrossRef Google scholar
[22]
Jena B, Sahu S, Kumar A, Swain D (2013). Observation of oligotrophic gyre variability in the south Indian Ocean: environmental forcing and biological response. Deep Sea Res Part I Oceangr Res Pap, 80: 1–10
CrossRef Google scholar
[23]
Jena B, Swain D, Tyagi A (2010). Application of artificial neural networks for sea-surface wind-speed retrieval from IRS-P4 (MSMR) brightness temperature. IEEE Geosci Remote S, 7(3): 567–571
CrossRef Google scholar
[24]
Kumar A, Jena B, Vinaya M S, Jayappa K S, Narayana A C, Bhat H G (2012). Regionally tuned algorithm to study the seasonal variation of suspended sediment concentration using IRS-P4 Ocean Colour Monitor data. Egyp J Remote Sens Space Sci, 15 (1): 67–81
CrossRef Google scholar
[25]
Luo C, Mahowald N M, Del Corral J (2003). Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport and distribution. J Geophys Res, 108(D15): 4447
CrossRef Google scholar
[26]
Martin J H, Gordon R M, Fitzwater S E (1990). Iron in Antarctic waters. Nature, 345(6271): 156–158
CrossRef Google scholar
[27]
Maximenko N A, Niiler P P (2005). Hybrid decade-mean global sea level with mesoscale resolution. In: Saxena, N, ed. Recent Advances in Marine Science and Technology 2004. PACON International: 55–59
[28]
Memarsadeghi N, Mount D M, Netanyahu N S, Le Moigne J (2007). A fast implementation of the ISODATA clustering algorithm. Int J Comput Geom Appl, 17(1): 71–103
CrossRef Google scholar
[29]
Minas H J, Minas M (1992). Net community production in high nutrient-low chlorophyll waters of the tropical and Antarctic Oceans: grazing vs. iron hypothesis. Oceanol Acta, 15: 145–162
[30]
Mishra R K, Naik R K, Anilkumar N (2015). Adaptations of phytoplankton in the Indian Ocean sector of the Southern Ocean during austral summer of 1998–2014. Front Earth Sci, 9(4): 742–752
CrossRef Google scholar
[31]
Mitchell B G, Holm-Hansen O (1991). Bio-optical properties of Antarctic Peninsula waters: differentiation from temperate ocean models. Deep Sea Res Part I Oceanogr Res Pap, 38(8–9): 1009–1028
CrossRef Google scholar
[32]
Moore J K, Abbott M R (2000). Phytoplankton chlorophyll distributions and primary production in the Southern Ocean. J Geophys Res, 105(C12): 28709–28722
CrossRef Google scholar
[33]
Moore J K, Abbott M R, Richman J G, Smith W O, Cowles T J, Coale K H, Gardner W D, Barber R T (1999). SeaWiFS satellite ocean color data from the Southern Ocean. Geophys Res Lett, 26(10): 1465–1468
CrossRef Google scholar
[34]
Nelson D M, Smith W O (1991). Sverdrup revisited: critical depths, maximum chlorophyll levels, and the control of Southern Ocean productivity by the irradiance-mixing regime. Limnol Oceanogr, 36(8): 1650–1661
CrossRef Google scholar
[35]
Orsi A H, Whitworth T III, Nowlin W D Jr (1995). On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res Part I Oceanogr Res Pap, 42(5): 641–673
CrossRef Google scholar
[36]
Palacios D M (2002). Factors influencing the island-mass effect of the Galápagos Archipelago. Geophys Res Lett, 29(23): 49-1–49-4
CrossRef Google scholar
[37]
Park Y H, Fuda J L, Durand I, Naveira Garabato A C (2008). Internal tides and vertical mixing over the Kerguelen Plateau. Deep Sea Res Part II Top Stud Oceanogr, 55(5‒7): 582–593
CrossRef Google scholar
[38]
Sedwick P N, DiTullio G R (1997). Regulation of algal blooms in Antarctic shelf water by the release of iron from melting sea ice. Geophys Res Lett, 24(20): 2515–2518
CrossRef Google scholar
[39]
Selph K E, Landry M R, Allen C B, Calbet A, Christensen S, Bidigare R R (2001). Microbial community composition and growth dynamics in the Antarctic Polar Front and seasonal ice zone during late spring 1997. Deep Sea Res Part II Top Stud Oceanogr, 48(19‒20): 4059–4080
CrossRef Google scholar
[40]
Signorini S R, McClain C R, Dandonneau Y (1999). Mixing and phytoplankton bloom in the wake of the Marquesas Islands. Geophys Res Lett, 26(20): 3121–3124
CrossRef Google scholar
[41]
Sunda W G (1989). Trace metal interactions with marine phytoplankton. Biol Oceanogr, 6: 411–442
[42]
Szeto M, Werdell P J, Moore T S, Campbell J W (2011). Are the worlds oceans optically different? Journal of Geophysical Research, 116 (C00H04), doi:10.1029/2011JC007230
[43]
Takeda S (1998). Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature, 393(6687): 774–777
CrossRef Google scholar
[44]
Tsuda A, Takeda S, Saito H,Nishioka J, Nojiri Y, Kudo I, Kiyosawa H, Shiomoto A, Imai K,Ono T, Shimamoto A, Tsumune D, Yoshimura T, Aono T,Hinuma A, Kinugasa M, Suzuki K, Sohrin Y, Noiri Y, Tani H, Deguchi Y, Tsurushima N, Ogawa H, Fukami K, Kuma K, Saino T (2003). A mesoscale iron enrichment in the western sub- arctic Pacific induces a large centric diatom bloom. Science, 300(5621): 958–961
CrossRef Google scholar
[45]
Venables H J, Moore C M (2010). Phytoplankton and light limitation in the Southern Ocean: learning from high nutrient high chlorophyll areas. J Geophys Res, 115(C2 C02015): C02015
CrossRef Google scholar
[46]
Zeldis J (2001). Mesozooplankton community composition, feeding, and export production during SOIREE. Deep Sea Res Part II Top Stud Oceanogr, 48(11‒12): 2615–2634
CrossRef Google scholar
[47]
Zender C S, Bian H, Newman D (2003). Mineral Dust Entrainment and Depositon (DEAD) model: description and 1990s dust climatology. J Geophys Res, 108(D14): 4416
CrossRef Google scholar

Acknowledgments

Continuous encouragement and support from the Director, National Centre for Antarctic and Ocean Research (NCAOR), and Dr. John Kurian from NCAOR are gratefully acknowledged. The institutions like the NASA’s Goddard Space Flight Center and National Geophysical Data Center (NGDC) are acknowledged for making the datasets available in public domain. This is NCAOR contribution no. 05/2016.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1467 KB)

Accesses

Citations

Detail

Sections
Recommended

/