Trace Projection Transformation: a new method for measurement of debris flow surface velocity fields

Yan YAN , Peng CUI , Xiaojun GUO , Yonggang GE

Front. Earth Sci. ›› 2016, Vol. 10 ›› Issue (4) : 761 -771.

PDF (3321KB)
Front. Earth Sci. ›› 2016, Vol. 10 ›› Issue (4) : 761 -771. DOI: 10.1007/s11707-015-0576-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Trace Projection Transformation: a new method for measurement of debris flow surface velocity fields

Author information +
History +
PDF (3321KB)

Abstract

Spatiotemporal variation of velocity is important for debris flow dynamics. This paper presents a new method, the trace projection transformation, for accurate, non-contact measurement of a debris-flow surface velocity field based on a combination of dense optical flow and perspective projection transformation. The algorithm for interpreting and processing is implemented in C++ and realized in Visual Studio 2012. The method allows quantitative analysis of flow motion through videos from various angles (camera positioned at the opposite direction of fluid motion). It yields the spatiotemporal distribution of surface velocity field at pixel level and thus provides a quantitative description of the surface processes. The trace projection transformation is superior to conventional measurement methods in that it obtains the full surface velocity field by computing the optical flow of all pixels. The result achieves a 90% accuracy of when comparing with the observed values. As a case study, the method is applied to the quantitative analysis of surface velocity field of a specific debris flow.

Keywords

debris flow / surface velocity field / spatiotemporal variation / dense optical flow / perspective projection transformation

Cite this article

Download citation ▾
Yan YAN, Peng CUI, Xiaojun GUO, Yonggang GE. Trace Projection Transformation: a new method for measurement of debris flow surface velocity fields. Front. Earth Sci., 2016, 10(4): 761-771 DOI:10.1007/s11707-015-0576-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adrian R J (2005). Twenty years of particle image velocimetry. Exp Fluids, 39(2): 159–169

[2]

Arattano M, Marchi L (2000). Video-derived velocity disribution along a debris flow surge. Phys Chem Earth, Part B Hydrol Oceans Atmos, 25(9): 781–784

[3]

Arattano M, Marchi L (2005). Measurements of debris flow velocity through cross-correlation of instrumentation data. Nat Hazards Earth Syst Sci, 5(1): 137–142

[4]

Bouguet J Y (2001). Pyramidal implementation of the affine Lucas kanade feature tracker description of the algorithm. Intel Corporation, 5

[5]

Calvo B, Savi F (2009). A real-world application of Monte Carlo procedure for debris flow risk assessment. Comput Geosci, 35(5): 967–977

[6]

Costa J E, Spicer K R, Cheng R T, Haeni F P, Melcher N B, Thurman E M, Plant W J, Keller W C (2000). Measuring stream discharge by non-contact methods: a proof-of-concept experiment. Geophys Res Lett, 27(4): 553–556

[7]

Cui P (1992). Study on conditions and mechanisms of debris flow initiation by means of experiment. Chin Sci Bull, 37: 759–763

[8]

Cui P, Chen X Q, Wang Y Y (2005). Jiangjia Ravine debris flows in south-western China. In: Jakob M, Hungr O, editors. Debris-flow hazards and related phenomena(pp. 565–594). Springer Berlin Heidelberg.

[9]

Cui P, Zhu Y Y, Chen J (2007). Relationships between antecedent rainfall and debris flows in Jiangjia ravine, China. In: Cheng-lung Chen, Jon J. Major, editors. Debris-flow hazards mitigation-mechanics, prediction, and assessment. Rotterdam: Millpress

[10]

Dramais G, Le Coz J, Camenen B, Hauet A (2011). Advantages of a mobile LSPIV method for measuring flood discharges and improving stage–discharge curves. J Hydro-environment Res, 5(4): 301–312

[11]

Farnebäck G (2003). Two-frame motion estimation based on polynomial expansion. In: Bigun J, Gustavsson T, eds. Image Analysis. Berlin Heidelberg: Springer Verlag, 363–370

[12]

Felberg R A, Christou I, Demchuk A M, Malkoff M, Alexandrov A V (2002). Screening for intracranial stenosis with transcranial Doppler: the accuracy of mean flow velocity thresholds. J Neuroimaging, 12(1): 9–14

[13]

Fox J F, Belcher B J (2011). Comparison of macroturbulence measured using decomposition of PIV, ADV and LSPIV data. J Hydraul Res, 49(1): 122–126

[14]

Fujisawa N, Oguma Y (2008). Measurement of pressure field around a NACA0018 airfoil from PIV velocity data. J Vis (Tokyo), 11(4): 281–282

[15]

Fujita I, Kunita Y (2011). Application of aerial LSPIV to the 2002 flood of the Yodo River using a helicopter mounted high density video camera. J Hydro-environment Res, 5(4): 323–331

[16]

Genevois R, Galgaro A, Tecca P R (2001). Image analysis for debris flow properties estimation. Phys Chem Earth, Part C Sol-terr Planet Sci, 26(9): 623–631

[17]

Guo X, Cui P, Li Y (2013). Debris flow warning threshold based on antecedent rainfall: a case study in Jiangjia ravine, Yunnan, China. Journal of Mountain Science, 10(2): 305–314

[18]

Hu K, Hu C, Li Y, Cui P (2011a). Characteristics and mechanism of debris-flow surges at Jiangjia ravine. In: 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment.Rome: Casa Editrice Università La Sapienza, 211–217

[19]

Hu K, Wei F, Li Y (2011b). Real-time measurement and preliminary analysis of debris-flow impact force at Jiangjia ravine, China. Earth Surf Process Landf, 36(9): 1268–1278

[20]

Hürlimann M, Rickenmann D, Graf C (2003). Field and monitoring data of debris-flow events in the Swiss Alps. Can Geotech J, 40(1): 161–175

[21]

Ilstad T, Elverhøi A, Issler D, Marr J G (2004). Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: a laboratory study using particle tracking. Mar Geol, 213(1‒4): 415–438

[22]

Itakura Y, Inaba H, Sawada T (2005). A debris-flow monitoring devices and methods bibliography. Nat Hazards Earth Syst Sci, 5(6): 971–977

[23]

Iverson R M (1997). The physics of debris flows. Rev Geophys, 35(3): 245–296

[24]

Kantoush S A, De Cesare G, Boillat J L, Schleiss A J (2008). Flow field investigation in a rectangular shallow reservoir using UVP, LSPIV and numerical modelling. Flow Meas Instrum, 19(3‒4): 139–144

[25]

Kantoush S A, Schleiss A J, Sumi T, Murasaki M (2011). LSPIV implementation for environmental flow in various laboratory and field cases. J Hydro-environment Res, 5(4): 263–276

[26]

Kouamé D, Girault J M, Remenieras J P, Chemla J P, Lethiecq M (2003). High resolution processing techniques for ultrasound doppler velocimetry in the presence of colored noise. Part II: multiplephase pipe-flow velocity measurement. IEEE Trans Ultrason Ferroelectr Freq Control, 50(3): 267–278

[27]

Lee S, Park C, Kang J, Daichin (2009). Evaluation of wind environment around a residential complex using a PIV velocity field measurement technique. Environ Fluid Mech, 9(6): 655–668

[28]

Leitgeb R, Schmetterer L F, Wojtkowski M, Hitzenberger C K, Sticker M, Fercher A F (2002). Flow velocity measurements by frequency domain short coherence interferometry. Proc SPIE, 4619: 16–21

[29]

Li Y, Liu J, Su F, Xie J, Wang B (2015). Relationship between grain composition and debris flow characteristics: a case study of the Jiangjia gully in China. Landslides, 12(1): 19–28

[30]

Marchi L, Arattano M, Deganutti A M (2002). Ten years of debris-flow monitoring in the Moscardo torrent (Italian Alps). Geomorphology, 46(1‒2): 1–17

[31]

Pedersen C J, Huang D, Shure M A, Rollins A M (2007). Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography. Opt Lett, 32(5): 506–508

[32]

Ren H, Brecke K M, Ding Z, Zhao Y, Nelson J S, Chen Z (2002). Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography. Opt Lett, 27(6): 409–411

[33]

Sederman A J, Mantle M D, Buckley C, Gladden L F (2004). MRI technique for measurement of velocity vectors, acceleration, and autocorrelation functions in turbulent flow. J Magn Reson, 166(2): 182–189

[34]

Shi B, Wei J, Pang M (2014). A modified optical flow algorithm based on bilateral-filter and multi-resolution analysis for PIV image processing. Flow Meas Instrum, 38: 121–130

[35]

Sidenbladh H, Black M J, Fleet D J (2000). Stochastic tracking of 3D human figures using 2D image motion. In: Computer vision—ECCV 2000. Berlin Heidelberg: Springer Verlag, 702–718

[36]

Szkulmowski M, Szkulmowska A, Bajraszewski T, Kowalczyk A, Wojtkowski M (2008). Flow velocity estimation using joint spectral and time domain optical coherence tomography. Opt Express, 16(9): 6008–6025

[37]

Takahashi T (1978). Mechanical characteristics of debris flow. J Hydraul Div, 104: 1153–1169

[38]

Tang J B, Hu K H, Zhou G D, Chen H Y, Zhu X H, Ma C (2013). Debris flow impact pressure signal processing by the wavelet analysis. Journal of Sichuan University: (Engineering Science Edition), 45: 8–13 (in Chinese)

[39]

Valentino R, Barla G, Montrasio L (2008). Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests. Rock Mech Rock Eng, 41(1): 153–177

[40]

Wang G, Wu Q J, Sun G (2008). Quasi-perspective projection with applications to 3D factorization from uncalibrated image sequences. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008. IEEE, 1–8

[41]

Wei F Q, Hu K H, Cui P, Chen J, He Y P (2002). Characteristics and origing of debris flow of Jiangjiagou valiey blocking. J Soil Water Conserv, 16: 71–75 (in Chinese)

[42]

Ying X, Hu Z, Zha H (2006). Fisheye lenses calibration using straight-line spherical perspective projection constraint. In: Narayanan P J, Nayar S K, Shum H Y, eds. Computer Vision–ACCV. Berlin Heidelberg: Springer Verlag, 61–70

[43]

Zhang Z, Wang X, Fan T, Xu L (2013). River surface target enhancement and background suppression for unseeded LSPIV. Flow Meas Instrum, 30: 99–111

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (3321KB)

1044

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/