An inexact risk management model for agricultural land-use planning under water shortage
Wei LI , Changchun FENG , Chao DAI , Yongping LI , Chunhui LI , Ming LIU
Front. Earth Sci. ›› 2016, Vol. 10 ›› Issue (3) : 419 -431.
An inexact risk management model for agricultural land-use planning under water shortage
Water resources availability has a significant impact on agricultural land-use planning, especially in a water shortage area such as North China. The random nature of available water resources and other uncertainties in an agricultural system present risk for land-use planning and may lead to undesirable decisions or potential economic loss. In this study, an inexact risk management model (IRM) was developed for supporting agricultural land-use planning and risk analysis under water shortage. The IRM model was formulated through incorporating a conditional value-at-risk (CVaR) constraint into an inexact two-stage stochastic programming (ITSP) framework, and could be used to control uncertainties expressed as not only probability distributions but also as discrete intervals. The measure of risk about the second-stage penalty cost was incorporated into the model so that the trade-off between system benefit and extreme expected loss could be analyzed. The developed model was applied to a case study in the Zhangweinan River Basin, a typical agricultural region facing serious water shortage in North China. Solutions of the IRM model showed that the obtained first-stage land-use target values could be used to reflect decision-makers’ opinions on the long-term development plan. The confidence level α and maximum acceptable risk loss β could be used to reflect decision-makers’ preference towards system benefit and risk control. The results indicated that the IRM model was useful for reflecting the decision-makers’ attitudes toward risk aversion and could help seek cost-effective agricultural land-use planning strategies under complex uncertainties.
agricultural land-use planning / risk management / CVaR / uncertainty / water shortage
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
DRIZRA (Design and Research Institute of Zhangweinan River Administration) (2008). Management Policy and Operation Regulation Report of Yuecheng Reservoir |
| [5] |
EBCZR (Editorial Board of Chorography of Zhangweinan River) (2003). Chorography of Zhangweinan River. Tianjin: Tianjin Science & Technology Press |
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
Higher Education Press and Springer-Verlag Berlin Heidelberg
Supplementary files
/
| 〈 |
|
〉 |