Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method

Shaolei TANG, Xiaofeng YANG, Di DONG, Ziwei LI

PDF(2266 KB)
PDF(2266 KB)
Front. Earth Sci. ›› 2015, Vol. 9 ›› Issue (4) : 722-731. DOI: 10.1007/s11707-015-0538-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method

Author information +
History +

Abstract

Sea surface temperature (SST) is an important variable for understanding interactions between the ocean and the atmosphere. SST fusion is crucial for acquiring SST products of high spatial resolution and coverage. This study introduces a Bayesian maximum entropy (BME) method for blending daily SSTs from multiple satellite sensors. A new spatiotemporal covariance model of an SST field is built to integrate not only single-day SSTs but also time-adjacent SSTs. In addition, AVHRR 30-year SST climatology data are introduced as soft data at the estimation points to improve the accuracy of blended results within the BME framework. The merged SSTs, with a spatial resolution of 4 km and a temporal resolution of 24 hours, are produced in the Western Pacific Ocean region to demonstrate and evaluate the proposed methodology. Comparisons with in situ drifting buoy observations show that the merged SSTs are accurate and the bias and root-mean-square errors for the comparison are 0.15°C and 0.72°C, respectively.

Keywords

sea surface temperature (SST) / Bayesian maximum entropy (BME) / remote sensing / data fusion

Cite this article

Download citation ▾
Shaolei TANG, Xiaofeng YANG, Di DONG, Ziwei LI. Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method. Front. Earth Sci., 2015, 9(4): 722‒731 https://doi.org/10.1007/s11707-015-0538-z

References

[1]
Alvera-Azcárate A, Barth A, Rixen M, Beckers J M (2005). Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the adriatic sea surface temperature. Ocean Model, 9(4): 325–346
CrossRef Google scholar
[2]
Bennett A F (2002). Inverse Modeling of the Ocean and Atmosphere. London: Cambridge University Press
[3]
Brown O B, Minnett P J, Evans R, Kearns E, Kilpatrick K, Kumar A, Sikorski R, Závody A (1999). MODIS Infrared Sea Surface Temperature Algorithm- Algorithm Theoretical Basis Document (Version 2.0). University of Miami
[4]
Casey K S, Brandon T B, Cornillon P, Evans R (2010). Oceanography from Space. Springer Netherlands, 273–287
[5]
Chao Y, Li Z, Farrara J D, Hung P (2009). Blending sea surface temperatures from multiple satellites and in situ observations for coastal oceans. J Atmos Ocean Technol, 26(7): 1415–1426
CrossRef Google scholar
[6]
Christakos G, Kolovos A, Serre M L, Vukovich F (2004). Total ozone mapping by integrating databases from remote sensing instruments and empirical models. IEEE Trans Geosci Rem Sens, 42(5): 991–1008
CrossRef Google scholar
[7]
Christakos G, Serre M L (2000). BME analysis of spatiotemporal particulate matter distributions in North Carolina. Atmos Environ, 34(20): 3393–3406
CrossRef Google scholar
[8]
Christakos G, Serre M L, Kovitz J L (2001). BME representation of particulate matter distributions in the state of California on the basis of uncertain measurements. Journal of Geophysical Research: Atmospheres (1984−2012), 106 (D9): 9717–9731
[9]
Cressie N (1992). Statistics for Spatial Data. Terra Nova, 4(5): 613–617
CrossRef Google scholar
[10]
Donlon C J, Martin M, Stark J, Roberts-Jones J, Fiedler E, Wimmer W (2012). The operational sea surface temperature and sea ice analysis (Ostia) system. Remote Sens Environ, 116(2): 140–158
CrossRef Google scholar
[11]
Gentemann C L, Donlon C J, Stuart-Menteth A, Wentz F J (2003). Diurnal signals in satellite sea surface temperature measurements. Geophys Res Lett, 30(3): 1140–1143
CrossRef Google scholar
[12]
Gentemann C L, Wentz F J, Mears C A, Smith D K (2004). In situ validation of tropical rainfall measuring mission microwave sea surface temperatures. Journal of Geophysical Research: Oceans, 109(C4): 249–260
[13]
Guan L, Kawamura H (2003). SST availabilities of satellite infrared and microwave measurements. J Oceanogr, 59(2): 201–209
CrossRef Google scholar
[14]
Isern-Fontanet J, Chapron B, Lapeyre G, Klein P (2006). Potential use of microwave sea surface temperatures for the estimation of ocean currents. Geophys Res Lett, 33(24): L24608
CrossRef Google scholar
[15]
Kawai Y, Kawamura H, Takahashi S, Hosoda K, Murakami H, Kachi M, Guan L (2006). Satellite-based high-resolution global optimum interpolation sea surface temperature data. Journal of Geophysical Research: Oceans (1978−2012), 111(C6): 285–293
[16]
Lee S L, Balling R, Gober P (2008). Bayesian maximum entropy mapping and the soft data problem in urban climate research. Ann Assoc Am Geogr, 98(2): 309–322
CrossRef Google scholar
[17]
Li A, Bo Y, Chen L (2013a). Bayesian maximum entropy data fusion of field-observed leaf area index (LAI) and Landsat Enhanced Thematic Mapper Plus-derived LAI. Int J Remote Sens, 34(1): 227–246
CrossRef Google scholar
[18]
Li A, Bo Y, Zhu Y, Guo P, Bi J, He Y (2013b). Blending multi-resolution satellite sea surface temperature (SST) products using Bayesian maximum entropy method. Remote Sens Environ, 135(4): 52–63
CrossRef Google scholar
[19]
Li X, Pichel W, Clemente-Colon N P, Krasnopolsky V, Sapper J (2001a). Validation of coastal sea and lake surface temperature measurements derived from NOAA/AVHRR data. International Journal of Remote Sensing, 22(7): 1285–1303
[20]
Li X, Pichel W, Maturi E, Clemente-Colon P, Sapper J (2001b). Deriving the operational nonlinear multi-channel sea surface temperature algorithm coefficients for NOAA-15 AVHRR/3. International Journal of Remote Sensing, 22(4): 699–704
[21]
Li X, Zheng Q, Pichel W G, Yan X, Timothy Liu W, Clemente-Colon P (2001c). Analysis of coastal lee waves along the coast of Texas observed in advanced very high resolution radiometer Images. J Geophys Res, 106(C4): 7017–7025
CrossRef Google scholar
[22]
Lorenc A C (1986). Analysis methods for numerical weather prediction. Q J R Meteorol Soc, 112(474): 1177–1194
CrossRef Google scholar
[23]
Reynolds R W, Smith T M (1994). Improved global sea surface temperature analyses using optimum interpolation. J Clim, 7(6): 929–948
CrossRef Google scholar
[24]
Reynolds R W, Zhang H, Smith T M, Gentemann C L, Wentz F (2005). Impacts of in situ and additional satellite data on the accuracy of a sea-surface temperature analysis for climate. Int J Climatol, 25(7): 857–864
CrossRef Google scholar
[25]
Sakaida F, Takahashi S, Shimada T, Kawai Y, Kawamura H, Hosoda K, Guan L (2005). The production of the new generation sea surface temperature (NGSST-O ver. 1.0) in Tohoku University. Geoscience and Remote Sensing Symposium, 2005. IGARSS '05. IEEE, 2005: 2602–2605
[26]
Smith T M, Reynolds R W (2003). Extended reconstruction of global sea surface temperatures based on COADS data (1854−1997). J Clim, 16(10): 1495–1510
CrossRef Google scholar
[27]
Spadavecchia L, Williams M (2009). Can spatio-temporal geostatistical methods improve high resolution regionalisation of meteorological variables? Agric Meteorol, 149(6−7): 1105–1117
CrossRef Google scholar
[28]
Tandeo P, Chapron B, Ba S, Autret E, Fablet R (2014). Segmentation of mesoscale ocean surface dynamics using satellite SST and SSH observations. IEEE Trans Geosci Rem Sens, 52(7): 4227–4235
CrossRef Google scholar
[29]
Wang W, Xie P (2007). A multiplatform-merged (MPM) SST analysis. J Clim, 20(9): 1662–1679
CrossRef Google scholar
[30]
Wentz F J, Meissner T (2000). AMSR Ocean Algorithm Theoretical Basis Document, Version 2. Remote Sensing Systems, Santa Rosa, CA
[31]
Yamamoto M, Hirose N (2007). Impact of SST reanalyzed using OGCM on weather simulation: a case of a developing cyclone in the Japan Sea area. Geophys Res Lett, 34(5): L05808
CrossRef Google scholar
[32]
Yu H L, Kolovos A, Christakos G, Chen J, Warmerdam S, Dev B (2007). Interactive spatiotemporal modeling of health systems: the SEKS–GUI framework. Stochastic Environ Res Risk Assess, 21(5): 555–572
CrossRef Google scholar
[33]
Zhou X, Yang X, Cheng L, Li Z (2012). Sensitivity analysis and validation of the single channel physical method for retrieving sea surface temperature. Journal of infrared and millimeter waves, 31(1): 91–96

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos. 41201350 and 41371355). We sincerely thank the University of North Carolina Bayesian Maximum Entropy (UNC-BME) laboratory at the UNC at Chapel Hill for supplying the BME codes.

RIGHTS & PERMISSIONS

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2266 KB)

Accesses

Citations

Detail

Sections
Recommended

/