Multiple-scale temporal variations and fluxes near a hydrothermal vent over the Southwest Indian Ridge

Xiaodan CHEN , Chujin LIANG , Changming DONG , Beifeng ZHOU , Guanghong LIAO , Junde LI

Front. Earth Sci. ›› 2015, Vol. 9 ›› Issue (4) : 691 -699.

PDF (1603KB)
Front. Earth Sci. ›› 2015, Vol. 9 ›› Issue (4) : 691 -699. DOI: 10.1007/s11707-015-0529-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Multiple-scale temporal variations and fluxes near a hydrothermal vent over the Southwest Indian Ridge

Author information +
History +
PDF (1603KB)

Abstract

A deep-ocean mooring system was deployed 100 m away from an active hydrothermal vent over the Southwest Indian Ridge (SWIR), where the water depth is about 2,800 m. One year of data on ocean temperature 50 m away from the ocean floor and on velocities at four levels (44 m, 40 m, 36 m, and 32 m away from the ocean floor) were collected by the mooring system. Multiple-scale variations were extracted from these data: seasonal, tidal, super-tidal, and eddy scales. The semidiurnal tide was the strongest tidal signal among all the tidal constituents in both currents and temperature. With the multiple-scale variation presented in the data, a new method was developed to decompose the data into five parts in terms of temporal scales: time-mean, seasonal, tidal, super-tidal, and eddy. It was shown that both eddy and tidal heat (momentum) fluxes were characterized by variation in the bottom topography: the tidal fluxes of heat and momentum in the along-isobath direction were much stronger than those in the cross-isobath direction. For the heat flux, eddy heat flux was stronger than tidal heat flux in the cross-isobath direction, while eddy heat flux was weaker in the along-isobath direction. For the momentum flux, the eddy momentum flux was weaker than tidal momentum flux in both directions. The eddy momentum fluxes at the four levels had a good relationship with the magnitude of mean currents: it increased with the mean current in an exponential relationship.

Keywords

multiple-scale analysis / tidal flux / eddy flux

Cite this article

Download citation ▾
Xiaodan CHEN, Chujin LIANG, Changming DONG, Beifeng ZHOU, Guanghong LIAO, Junde LI. Multiple-scale temporal variations and fluxes near a hydrothermal vent over the Southwest Indian Ridge. Front. Earth Sci., 2015, 9(4): 691-699 DOI:10.1007/s11707-015-0529-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao HCao Z (2011). Review of submarine hydrothermal activities in Southwest Indian Ridge. Marine Geology and Quaternary Geology31(1): 67–75(in Chinese)

[2]

Crone T JWilcock W S (2005). Modeling the effects of tidal loading on mid-ocean ridge hydrothermal systems. Geochem Geophys Geosyst6(7): n/a

[3]

Dong CIdica E YMcWilliams J C (2009). Circulation and multiple-scale variability in the Southern California Bight. Prog Oceanogr82(3): 168–190

[4]

Edmonds H NMichael P JBaker E TConnelly D PSnow J ELangmuir C HDick J BMühe RGerman C RGraham D W (2003). Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature421(6920): 252–256

[5]

Emery W JMeincke J (1986). Global water masses-summary and review. Oceanol Acta9(4): 383–391

[6]

Faria A FThornton E BStanton T PSoares C VLippmann T C (1998). Vertical profiles of longshore currents and related bed shear stress and bottom roughness. Journal of Geophysical Research: Oceans (1978−2012)103(C2): 3217–3232

[7]

Feddersen FGuza R TElgar SHerbers T H C (2000). Velocity moments in alongshore bottom stress parameterizations. Journal of Geophysical Research: Oceans (1978−2012)105(C4): 8673–8686

[8]

Huang WTao CDeng XZhou JSun YDou BLiu W (2009). Discussion and the scientific significance of IODP drilling to study in the 49°39′E vent field in Southwest Indian Ridge. Journal of Marine Sciences27(02): 97–103 (in Chinese)

[9]

Kolla VHenderson LBiscaye P E (1976a). Clay mineralogy and sedimentation in the western Indian Ocean. Deep-Sea Res23(10): 949–961

[10]

Kolla VSullivan LStreeter S SLangseth M G (1976b). Spreading of Antarctic Bottom Water and its effects on the floor of the Indian Ocean inferred from bottom-water potential temperature, turbidity, and sea-floor photography. Mar Geol21(3): 171–189

[11]

LeBlond P H (1976). Temperature-salinity analysis of world ocean waters. Journal of the Fisheries Board of Canada33(6): 1471

[12]

Li XChu FLei JZhao J (2008). Advances in slow-ultraslow-spreading Southwest Indian Ridge. Advances in Earth Science23(6): 595–603 (in Chinese)

[13]

Middleton J MThomson R E (1986). Modelling the rise of hydrothermal plumes. Canadian Technical Report of Hydrography and Ocean Science69: 1–18

[14]

Minshull T AMuller M RWhite R S (2006). Crustal structure of the Southwest Indian Ridge at 66 E: seismic constraints. Geophys J Int166(1): 135–147

[15]

Morton B RTaylor GTurner J S (1956). Turbulent gravitational convection from maintained and instantaneous sources. Proc R Soc Lond A Math Phys Sci234(1196): 1–23

[16]

Muller M RMinshull T AWhite R S (2000). Crustal structure of the Southwest Indian Ridge at the Atlantis II fracture zone. Journal of Geophysical Research: Solid Earth (1978−2012)105(B11): 25809–25828

[17]

Pawlowicz RBeardsley BLentz S (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci28(8): 929–937

[18]

Reid J L (2003). On the total geostrophic circulation of the Indian Ocean: flow patterns, tracers, and transports. Prog Oceanogr56(1): 137–186

[19]

Rooth C (1972). A linearized bottom friction law for large-scale oceanic motions. J Phys Oceanogr2(4): 509–510

[20]

Santoso AEngland M HHirst A C (2006). Circumpolar deep water circulation and variability in a coupled climate model. J Phys Oceanogr36(8): 1523–1552

[21]

Speer K GRona P A (1989). A model of an Atlantic and Pacific hydrothermal plume. Journal of Geophysical Research: Oceans (1978−2012)94(C5): 6213–6220

[22]

Tao CLi HHuang WHan XWu GSu XZhou NLin JHe Y HZhou J P (2011). Mineralogical and geochemical features of sulfide chimneys from the 49 39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences. Chin Sci Bull56(26): 2828–2838

[23]

Tao CLin JGuo SChen YWu GHan XGerman C RYoerger D RZhou NLi HSu XZhu J (2012). First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology40(1): 47–50

[24]

Warren B A (1974). Deep flow in the Madagascar and Mascarene basins. Deep-Sea Res21(1): 1–21

[25]

Warren B A (1978). Bottom water transport through the Southwest Indian Ridge. Deep-Sea Res25(3): 315–321

[26]

Wichers S (2005). Verification of numerical models for hydrothermal plume water through field measurements at TAG. Dissertation for PhD Degree. Massachusetts Institute of Technology

[27]

Zhang TGao J (2011). Characters of magmatic activity and tectonics on the ultraslow spreading ridge in Southwest Indian ocean. Advances in Marine Science29(03): 314–322 (in Chinese)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1603KB)

1212

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/