Ground-penetrating radar study of beach-ridge deposits in Huangqihai Lake, North China: the imprint of washover processes

Xin SHAN, Xinghe YU, Peter D. CLIFT, Chengpeng TAN, Shunli LI, Zhixing WANG, Dongxu SU

PDF(3564 KB)
PDF(3564 KB)
Front. Earth Sci. ›› 2016, Vol. 10 ›› Issue (1) : 183-194. DOI: 10.1007/s11707-015-0501-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Ground-penetrating radar study of beach-ridge deposits in Huangqihai Lake, North China: the imprint of washover processes

Author information +
History +

Abstract

Determining the origin of beach ridges in lacustrine basins can often be problematic. The sedimentary processes responsible for formation of beach ridges on the north shore of Huangqihai Lake were investigated by using ground penetrating radar (GPR). A 400 MHz GPR antenna was used to achieve a high vertical resolution of 0.04–0.08 m. The radar stratigraphy was then determined using principles of seismic stratigraphy. The radar facies (RF) were determined by analyzing internal configuration and continuity of reflections, as well as reflection termination patterns.

The identified RF fall into three groups (inclined, horizontal and irregular). The inclined group consists of RF that display inclined reflections. The horizontal group consists of RF that exhibit predominantly horizontal reflections. In the irregular group, the reflections are typically weak. RF with reflections with gently landward dips in the shore-normal profile are interpreted as washover sheet deposits. RF with steeply landward-dipping and imbricated reflections are interpreted as washover lobes. Washover sheets develop when overwash fails to enter a significant body of water and sedimentation takes place entirely on the relatively flattened topography. Washover lobe development occurs when overwash enters a region in which topography dips steeply landward, and sedimentation takes place on the surface of washover sheets or previous washover lobes. The beach-ridge deposits are interpreted as being formed entirely from vertically and laterally stacked washover sheets and washover lobes. They were formed by wave-dominated processes and secondary overwash processes supplemented by longshore currents.

Keywords

beach-ridge / ground penetrating radar / radar facies / radar stratigraphy / washover process

Cite this article

Download citation ▾
Xin SHAN, Xinghe YU, Peter D. CLIFT, Chengpeng TAN, Shunli LI, Zhixing WANG, Dongxu SU. Ground-penetrating radar study of beach-ridge deposits in Huangqihai Lake, North China: the imprint of washover processes. Front. Earth Sci., 2016, 10(1): 183‒194 https://doi.org/10.1007/s11707-015-0501-z

References

[1]
Anthony E J (1995). Beach-ridge development and sediment supply: examples from West Africa. Mar Geol, 129(1−2): 175–186
CrossRef Google scholar
[2]
Bennett M R, Cassidy N J, Pile J (2009). Internal structure of a barrier beach as revealed by ground penetrating radar (GPR): Chesil beach, UK. Geomorphology, 104(3−4): 218–229
CrossRef Google scholar
[3]
Best J L, Ashworth P J, Bristow C S, Roden J (2003). Three-dimensional sedimentary architecture of a large, mid-channel sand braid bar, Jamuna River, Bangladesh. J Sediment Res, 73(4): 516–530
CrossRef Google scholar
[4]
Bristow C (2009). Ground penetrating radar in Aeolian dune sands. In: Harry M J, ed. Ground Penetrating Radar Theory and Applications. Amsterdam: Elsevier, 274–295
[5]
Corbeanu R M, Soegaard K, Szerbiak R B, John B T, George A M, Wang D M, Steven S, Craig B F, Ari M (2001). Detailed internal architecture of a fuvial channel sandstone determined from outcrop, cores, and 3-D ground-penetrating radar: example from the Middle Cretaceous Ferron Sandstone, East-Central Utah. AAPG Bull, 85: 1583–1608
[6]
Deng H W, Xiao Y, Ma L X, Jiang Z L (2011). Genetic type, distribution patterns and controlling factors of beach and bars in the second member of the Shahejie formation in the Dawangbei Sag, Bohai Bay, China. Geol J, 46(4): 380–389
CrossRef Google scholar
[7]
Drake N, Bristow C (2006). Shorelines in the Sahara: geomorphological evidence for an enhanced monsoon from palaeolake Megachad. Holocene, 16(6): 901–911
CrossRef Google scholar
[8]
Harvey N (2006). Holocene coastal evolution: barriers, beach ridges, and tidal flats of South Australia. J Coast Res, 22(1): 90–99
CrossRef Google scholar
[9]
Jiang Z X, Liu H, Zhang S W, Su X, Jiang Z L (2011). Sedimentary characteristics of large-scale lacustrine beach-bars and their formation in the Eocene Boxing Sag of Bohai Bay Basin, East China. Sedimentology, 58(5): 1087–1112
CrossRef Google scholar
[10]
Jol H M, Bristow C S (2003). GPR in sediments: advice on data collection, basic processing and interpretation, a good practice guide. In: Bristow C S, Jol H M, eds. Ground Penetrating Radar in Sediments. Geol Soc London Spec Publ, 211: 9–27
[11]
Lee K, Gani M R, McMechan G A, Bhattacharya J P, Nyman S L, Zeng X (2007). Three-dimensional facies architecture and three-dimensional calcite concretion distributions in a tide-influenced delta front, Wall Creek Member, Frontier Formation, Wyoming. AAPG Bull, 91(2): 191–214
CrossRef Google scholar
[12]
Leeder M (2011). Sedimentology and Sedimentary Basins: from Turbulence to Tectonics (2nd ed). Oxford: Wiley-Blackwell, 319–343
[13]
Matias A, Ferreira Ó, Vila-Concejo A, Garcia T, Dias J A (2008). Classification of washover dynamics in barrier islands. Geomorphology, 97(3−4): 655–674
CrossRef Google scholar
[14]
Miall A D (1988). Architectural elements and bounding surfaces in fluvial deposits: anatomy of the Kayenta Formation (Lower Jurassic), Southwest Colorado. Sediment Geol, 55(3−4): 233–262
CrossRef Google scholar
[15]
Morton R A, Gonzalez J L, Lopez G I, Correa I D (2000). Frequent non-storm washover of barrier islands, Pacific Coast of Colombia. J Coast Res, 16(1): 82–87
[16]
Neal A (2004). Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth Sci Rev, 66(3−4): 261–330
CrossRef Google scholar
[17]
Neal A, Pontee N I, Pye K, Richards J (2002). Internal structure of mixed-sand-and-gravel beach deposits revealed using ground-penetrating radar. Sedimentology, 49(4): 789–804
CrossRef Google scholar
[18]
Neal A, Richards J, Pye K (2003). Sedimentology of coarse-clastic beach-ridge deposits, Essex, southeast England. Sediment Geol, 162(3−4): 167–198
CrossRef Google scholar
[19]
Nichol S L (2002). Morphology, stratigraphy and origin of last intergacial beach ridges at bream bay, New Zealand. J Coast Res, 18: 149–159
[20]
Nichols G (2009). Sedimentology and Stratigraphy. Oxford: Wiley-Blackwell, 151–161
[21]
Nielsen L, Clemmensen L B (2009). Sea-level markers identified in ground-penetrating radar data collected across a modern beach ridge system in a microtidal regime. Terra Nova, 21(6): 474–479
CrossRef Google scholar
[22]
Otvos E G (2000). Beach ridges—Definitions and significance. Geomorphology, 32(1−2): 83–108
CrossRef Google scholar
[23]
Scholz C A, Rosendahl B R, Scott D L (1990). Development of coarse-grained facies in lacustrine rift basins: examples from East Africa. Geology, 18(2): 140–144
CrossRef Google scholar
[24]
Sebastian L, Christian B, Christian H (2008). The sedimentary architecture of a Holocene barrier spit (Sylt, German Bight): swash-bar accretion and storm erosion. Sedimentary geolology, 206: 1–16
[25]
Talbot M R, Allen P A (1996). Lakes. In: Reading H G, ed. Sedimentary Environments: Processes, Facies and Stratigraphy. Oxford: Blackwell, 89–91
[26]
Tamura T, Murakami F, Nanayama F, Watanabe K, Saito Y (2008). Ground-penetrating radar profiles of Holocene raised-beach deposits in the Kujukuri strand plain, Pacific coast of eastern Japan. Mar Geol, 248(1−2): 11–27
CrossRef Google scholar
[27]
Yu X H, Li S L, Chen B T, Tan C P, Xie J, Hu X N (2012). Interaction between downslope and along slope processes on the margins of Daihai Lake, North China: implication for deltaic sedimentation models of lacustrine rift basin. Acta Geol Sin, 86(4): 932–948
CrossRef Google scholar
[28]
Zhang J R, Jia Y L, Lai Z P, Long H, Yang L H (2011). Holocene evolution of Huangqihai Lake in semi-arid northern China based on sedimentology and luminescence dating. Holocene, 21(8): 1261–1268
CrossRef Google scholar

Acknowledgements

This paper was supported by the State Scholarship Fund (Grant No. 201406400030), the National Natural Science Foundation of China (Grant No. 41072084) and Research Fund for the Doctoral Program of Higher Education (Grant No. 20120022130002). The authors sincerely thank Professor Lars B. Clemmensen of University of Copenhagen for his constructive idea. The authors also thank Beibei Liu, Yonghui Du, Zhaopu Gao and Yanan Miao for their assistance in the field and laboratory. Clift thanks the Charles T. McCord Chair in Petroleum Geology for support. The authors also thank two anonymous reviewers.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(3564 KB)

Accesses

Citations

Detail

Sections
Recommended

/