Risk management for sulfur dioxide abatement under multiple uncertainties

C. DAI , W. SUN , Q. TAN , Y. LIU , W.T. LU , H.C. GUO

Front. Earth Sci. ›› 2016, Vol. 10 ›› Issue (1) : 87 -107.

PDF (1305KB)
Front. Earth Sci. ›› 2016, Vol. 10 ›› Issue (1) : 87 -107. DOI: 10.1007/s11707-015-0495-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Risk management for sulfur dioxide abatement under multiple uncertainties

Author information +
History +
PDF (1305KB)

Abstract

In this study, interval-parameter programming, two-stage stochastic programming (TSP), and conditional value-at-risk (CVaR) were incorporated into a general optimization framework, leading to an interval-parameter CVaR-based two-stage programming (ICTP) method. The ICTP method had several advantages: (i) its objective function simultaneously took expected cost and risk cost into consideration, and also used discrete random variables and discrete intervals to reflect uncertain properties; (ii) it quantitatively evaluated the right tail of distributions of random variables which could better calculate the risk of violated environmental standards; (iii) it was useful for helping decision makers to analyze the trade-offs between cost and risk; and (iv) it was effective to penalize the second-stage costs, as well as to capture the notion of risk in stochastic programming. The developed model was applied to sulfur dioxide abatement in an air quality management system. The results indicated that the ICTP method could be used for generating a series of air quality management schemes under different risk-aversion levels, for identifying desired air quality management strategies for decision makers, and for considering a proper balance between system economy and environmental quality.

Keywords

risk management / conditional value-at-risk / interval optimization / two-stage programming / uncertainty / air quality management

Cite this article

Download citation ▾
C. DAI, W. SUN, Q. TAN, Y. LIU, W.T. LU, H.C. GUO. Risk management for sulfur dioxide abatement under multiple uncertainties. Front. Earth Sci., 2016, 10(1): 87-107 DOI:10.1007/s11707-015-0495-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmed S (2004). Mean-risk objectives in stochastic programming. Technical report, Georgia Institute of Technology, available at 

[2]

An HEheart J W (2007). A screening technique for joint chance-constrained programming for air-quality management. Oper Res55(4): 792–798

[3]

Athanasiadis I NMitkas P A (2007). Knowledge discovery for operational decision support in air quality management. Journal of Environmental Informatics9(2): 100–107

[4]

Birbil S IFrenk JKaynar BNoyan N (2009). Risk measures and their applications in asset management. In: Gregoriou G N, ed. The VaR Implementation Handbook. New York: The McGraw-Hill Companies, 311–337

[5]

Birge J RLouveaux F V (1988). A multicut algorithm for two-stage stochastic linear programs. Eur J Oper Res34(3): 384–392

[6]

Byun D WKim S TChen F YKim S BCuclis AMoon N K (2003). Information infrastructure for air quality modeling and analysis: application to the houston-galveston ozone non-attainment area. Journal of Environmental Informatics2(2): 38–57

[7]

Cai Y PHuang G HTan QYang Z F (2011a). An integrated approach for climate-change impact analysis and adaptation planning under multi-level uncertainties. Part I: methodology. Renewable & Sustainable Energy Reviews15: 2779–2790

[8]

Cai Y PHuang G HTan QLiu L (2011b). An integrated approach for climate-change impact analysis and adaptation planning under multi-level uncertainties. Part II. case study. Renewable & Sustainable Energy Reviews15: 3051–3073

[9]

Chen CHuang G HLi YLi M (2013a). Model of risk analysis on site selection of biomass power plant based on stochastic robust interval method. Transactions of the Chinese Society of Agricultural Engineering29(20): 206–213

[10]

Chen CHuang G HLi Y PZhou Y (2013b). A robust risk analysis method for water resources allocation under uncertainty. Stochastic Environ Res Risk Assess27(3): 713–723

[11]

Dai CLi YHuang G (2012). An interval-parameter chance-constrained dynamic programming approach for capacity planning under uncertainty. Resour Conserv Recycling62: 37–50

[12]

Dentcheva DRuszczynski A (2006). Portfolio optimization with stochastic dominance constraints. J Bank Finance30(2): 433–451

[13]

Dong CHuang G HCai Y PLiu Y (2012). An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing City. Energy37(1): 673–688

[14]

Fábián C I (2008). Handling CVaR objectives and constraints in two-stage stochastic models. Eur J Oper Res191(3): 888–911

[15]

Haurie AKübler JClappier AVan Den Bergh H (2004). A metamodeling approach for integrated assessment of air quality policies. Environ Model Assess9(1): 1–12

[16]

Hsu C PHuang C WPaul Chiou W J P (2012). Effectiveness of copula-extreme value theory in estimating value-at-risk: empirical evidence from Asian emerging markets. Rev Quant Finance Account39(4): 447–468

[17]

Huang GLoucks D (2000). An inexact two-stage stochastic programming model for water resources management under uncertainty. Civ Eng Environ Syst17(2): 95–118

[18]

Huang G HBaetz B WPatry G G (1994). Grey dynamic programming for waste-management planning under uncertainty. J Urban Plann Dev120(3): 132–156

[19]

Huang G HChang N B (2003). Perspectives of environmental informatics and systems analysis. J Environ Inform1(1): 1–6

[20]

Inuiguchi MSakawa M (1998). Robust optimization under softness in a fuzzy linear programming problem. Int J Approx Reason18(1‒2): 21–34

[21]

Lejano R PAyala P MGonzales E A (1997). RESEARCH: optimizing the mix of strategies for control of vehicular emissions. Environ Manage21(1): 79–87

[22]

Li YHuang GNie XNie S (2008). An inexact fuzzy-robust two-stage programming model for managing sulfur dioxide abatement under uncertainty. Environ Model Assess13(1): 77–91

[23]

Li YHuang G HVeawab ANie XLiu L (2006). Two-stage fuzzy-stochastic robust programming: a hybrid model for regional air quality management. J Air Waste Manag Assoc56(8): 1070–1082

[24]

Lim CSherali H DUryasev S (2010). Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization. Comput Optim Appl46(3): 391–415

[25]

Liu LHuang GLiu YFuller GZeng G (2003). A fuzzy-stochastic robust programming model for regional air quality management under uncertainty. Eng Optim35(2): 177–199

[26]

Liu YZou RGuo H (2011). Risk explicit interval linear programming model for uncertainty-based nutrient-reduction optimization for the Lake Qionghai Watershed. J Water Resour Plann Manage137(1), 83–91

[27]

Lv YHuang G HLi Y PYang Z FSun W (2011). A two-stage inexact joint-probabilistic programming method for air quality management under uncertainty. J Environ Manage92(3): 813–826

[28]

Ma XZhang F (2002). A genetic algorithm based stochastic programming model for air quality management. J Environ Sci (China)14(3): 367–374

[29]

Marti KPloöchinger E (1990). Optimal step sizes in semi-stochastic approximation procedures. I. Optimization21(1): 123–153

[30]

Miller NRuszczynski A (2008). Risk-adjusted probability measures in portfolio optimization with coherent measures of risk. Eur J Oper Res191(1): 193–206

[31]

Noyan N (2012). Risk-averse two-stage stochastic programming with an application to disaster management. Comput Oper Res39(3): 541–559

[32]

Rockafellar R TUryasev S (2000). Optimization of conditional value-at-risk. Journal of Risk2: 21–42

[33]

Ruszczyński A (1993). Parallel decomposition of multistage stochastic programming problems. Math Program58(1–3): 201–228

[34]

Schultz R (2011). Risk aversion in two-stage stochastic integer programming. Stochastic Programming: 165–187

[35]

Schultz RTiedemann S (2006). Conditional value-at-risk in stochastic programs with mixed-integer recourse. Math Program105(2‒3): 365–386

[36]

Seifi AHipel K (2001). Interior-point method for reservoir operation with stochastic inflows. J Water Resour Plan Manage127(1): 48–57

[37]

Shao L GQin X SXu Y (2011). A conditional value-at-risk based inexact water allocation model. Water Resour Manage25(9): 2125–2145

[38]

Tan QHuang G HWu C ZCai Y P (2011). IF-EM: an interval-parameter fuzzy linear programming model for environment-oriented evacuation planning under uncertainty. J Adv Transport45(4): 286–303

[39]

Tong X JQi L QWu FZhou H (2010). A smoothing method for solving portfolio optimization with CVaR and applications in allocation of generation asset. Appl Math Comput216(6): 1723–1740

[40]

Turner D B (1970). Workbook of atmospheric dispersion estimates. Washington D C: Office of Air Programs, Publication No. AP-26, U.S. Environmental Protection Agency

[41]

Wang LMilford J B (2001). Reliability of optimal control strategies for photochemical air pollution. Environ Sci Technol35(6): 1173–1180

[42]

Zolezzi T (2001). Well-posedness and optimization under perturbations. Ann Oper Res101(1/4): 351–361

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1305KB)

887

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/