Sensitivity study of subgrid scale ocean mixing under sea ice using a two-column ocean grid in climate model CESM

Meibing JIN , Jennifer HUTCHINGS , Yusuke KAWAGUCHI

Front. Earth Sci. ›› 2015, Vol. 9 ›› Issue (4) : 594 -604.

PDF (2930KB)
Front. Earth Sci. ›› 2015, Vol. 9 ›› Issue (4) : 594 -604. DOI: 10.1007/s11707-014-0489-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Sensitivity study of subgrid scale ocean mixing under sea ice using a two-column ocean grid in climate model CESM

Author information +
History +
PDF (2930KB)

Abstract

Brine drainage from sea ice formation plays a critical role in ocean mixing and seasonal variations of halocline in polar oceans. The horizontal scale of brine drainage and its induced convection is much smaller than a climate model grid and a model tends to produce false ocean mixing when brine drainage is averaged over a grid cell. A two-column ocean grid (TCOG) scheme was implemented in the Community Earth System Model (CESM) using coupled sea ice-ocean model setting to explicitly solve the different vertical mixing in the two sub-columns of one model grid with and without brine rejection. The fraction of grid with brine rejection was tested to be equal to the lead fraction or a small constant number in a series of sensitivity model runs forced by the same atmospheric data from 1978 to 2009. The model results were compared to observations from 29 ice tethered profilers (ITP) in the Arctic Ocean Basin from 2004 to 2009. Compared with the control run using a regular ocean grid, the TCOG simulations showed consistent reduction of model errors in salinity and mixed layer depth (MLD). The model using a small constant fraction grid for brine rejection was found to produce the best model comparison with observations, indicating that the horizontal scale of the brine drainage is very small compared to the sea ice cover and even smaller than the lead fraction. Comparable to models using brine rejection parameterization schemes, TCOG achieved more improvements in salinity but similar in MLD.

Keywords

climate model / sea ice / mixed-layer depth / ocean mixing / brine drainage

Cite this article

Download citation ▾
Meibing JIN, Jennifer HUTCHINGS, Yusuke KAWAGUCHI. Sensitivity study of subgrid scale ocean mixing under sea ice using a two-column ocean grid in climate model CESM. Front. Earth Sci., 2015, 9(4): 594-604 DOI:10.1007/s11707-014-0489-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bitz C MHolland M MWeaver A JEby M (2001). Simulating the ice-thickness distribution in a coupled climate model. J Geophys Res106(C2): 2441–2463

[2]

Danabasoglu GBates SBriegleb B PJayne S RJochum MLarge W GPeacock SYeager S G (2012). The CCSM4 ocean component. J Clim25(5): 1361–1389

[3]

Duffy PEby MWeaver A (1999). Effects of sinking of salt rejected during formation of sea ice on results of an ocean-atmosphere-sea ice climate model. Geophysical Research Letter26(12), 1739–1742

[4]

Fetterer FKnowles KMeier KSavoie M (2002). Updated 2009. Sea Ice Index [ice extent]. Boulder: National Snow and Ice Data Center.

[5]

Hunke E CLipscomb W HTurner A KJeffery NElliott S (2013). CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 5.0 LA-CC-06–012, Los Alamos National Laboratory, USA

[6]

Jin MHutchings JKawaguchi YKikuchi T (2012). Ocean mixing with lead-dependent subgrid scale brine rejection parameterization in climate model. J Ocean Univ China11(4): 473–480

[7]

Kantha L H (1995). A numerical model of Arctic leads. J Geophys Res100(C3): 4653–4672

[8]

Lake R ALewis E L (1970). Salt rejection by sea ice during growth. J Geophys Res75(3): 583–597

[9]

Large WDanabasoglu GDoney SMcWilliams J (1997). Sensitivity to surface forcing and boundary layer mixing in the NCAR CSM ocean model: annual-mean climatology. J Phys Oceanogr27(11): 2418–2447

[10]

Large W GMcWilliams J CDoney S C (1994). Oceanic vertical mixing: a review and a model with a vertical K-profile boundary layer parameterization. Rev Geophys32(4): 363–403

[11]

Large W GYeager S G (2009). The global climatology of an interannually varying air-sea flux data set. Clim Dyn33(2-3): 341–364

[12]

Matsumura YHasumi H (2008). Brine-driven eddies under sea ice leads and their impact on the Arctic Ocean mixed layer. Journal of Physical Oceanography38: 146–163

[13]

Morison J H (1993). The lead experiment. Eos Trans AGU74(35): 393–397

[14]

Nguyen A TMenemenlis DKwok R (2009). Improved modeling of the Arctic halocline with a subgrid-scale brine rejection parameterization. J Geophys Res114(C11): C11014

[15]

Steele MMorley RErmold W (2001). PHC: a global ocean hydrography with a high quality Arctic Ocean. J Clim14(9): 2079–2087

[16]

Toole J MTimmermans M LPerovich D KKrishfield R AProshutinsky ARichter-Menge J A (2010). Influences of the ocean surface mixed layer and thermohaline stratification on Arctic Sea ice in the central Canada Basin. J Geophys Res115(C10): C10018

[17]

Wakatsuchi MOno N (1983). Measurements of salinity and volume of brine excluded from growing sea ice. J Geophys Res88(C5): 2943–2951

[18]

Wettlaufer J SWorster M CHuppert H E (1997). The phase evolution of young ice. Geophys Res Lett24(10): 1251–1254

[19]

Zhang JSteele M (2007). Effect of vertical mixing on the Atlantic Water layer circulation in the Arctic Ocean. J Geophys Res112(C4): C04S04

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (2930KB)

1283

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/