Comparison of Suomi-NPP OMPS total column ozone with Brewer and Dobson spectrophotometers measurements

Kaixu BAI, Chaoshun LIU, Runhe SHI, Wei GAO

PDF(1430 KB)
PDF(1430 KB)
Front. Earth Sci. ›› 2015, Vol. 9 ›› Issue (3) : 369-380. DOI: 10.1007/s11707-014-0480-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Comparison of Suomi-NPP OMPS total column ozone with Brewer and Dobson spectrophotometers measurements

Author information +
History +

Abstract

The objective of this study is to evaluate the accuracy of the daily nadir total column ozone products derived from the nadir mapper instrument on the Ozone Mapping and Profiler Suite (OMPS) flying onboard the Suomi National Polar-orbiting Partnership satellite (S-NPP) launched as a part of the Joint Polar Satellite System (JPSS) program between NOAA and NASA. Since NOAA is already operationally processing OMPS nadir total ozone products, evaluations were made in this study on the total column ozone research products generated by NASA’s science team, utilizing the latest version of their Backscatter Ultraviolet (BUV) retrieval algorithms, to provide insight into the performance of the operation system. Comparisons were made with globally distributed ground-based Brewer and Dobson spectrophotometer total column ozone measurements. Linear regressions show fair agreement between OMPS and ground-based total column ozone measurements with a root-mean-square error (RMSE) of approximately 3% (10 DU). The comparison results indicate that the OMPS total column ozone data are 0.59% higher than the Brewer measurements with a standard deviation of 2.82% while 1.09% higher than the Dobson measurements with a standard deviation of 3.27%. Additionally, the variability of relative differences between OMPS and ground total column ozone were analyzed as a function of latitude, time, viewing geometry, and total column ozone value. Results show a 2% bias over most latitudes and viewing conditions when total column ozone value varies between 220 DU and 450 DU.

Graphical abstract

Keywords

ozone mapping and profiler suite / total column ozone / Brewer / Dobson

Cite this article

Download citation ▾
Kaixu BAI, Chaoshun LIU, Runhe SHI, Wei GAO. Comparison of Suomi-NPP OMPS total column ozone with Brewer and Dobson spectrophotometers measurements. Front. Earth Sci., 2015, 9(3): 369‒380 https://doi.org/10.1007/s11707-014-0480-5

References

[1]
Antón M, Bortoli D, Costa M J, Kulkarni P S, Domingues A F, Barriopedro D, Serrano A, Silva A M (2011). Temporal and spatial variabilities of total ozone column over Portugal. Remote Sens Environ, 115(3): 855–863
CrossRef Google scholar
[2]
Antón M, Koukouli M E, Kroon M, McPeters R D, Labow G J, Balis D, Serrano A (2010). Global validation of empirically corrected EP-Total Ozone Mapping Spectrometer (TOMS) total ozone columns using Brewer and Dobson ground-based measurements. J Geophys Res, 115(D19): D19305
CrossRef Google scholar
[3]
Antón M, López M, Vilaplana J M, Kroon M, McPeters R D, Bañón M, Serrano A M (2009a). Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian peninsula. J Geophys Res, 114(D14): D14307
CrossRef Google scholar
[4]
Antón M, Loyola D, López M, Vilaplana J M, Bañón M, Zimmer W, Serrano A M (2009b). Comparison of GOME-2/MetOp total ozone data with Brewer spectroradiometer data over the Iberian Peninsula. Ann Geophys, 27(4): 1377–1386
CrossRef Google scholar
[5]
Bai K X, Liu C S, Shi R H, Zhang Y, Gao W (2013). Global validation of FY-3A total ozone unit (TOU) total ozone columns using ground-based Brewer and Dobson measurements. Int J Remote Sens, 34(14): 5228–5242
CrossRef Google scholar
[6]
Baker N, Kilcoyne H (2011). Joint Polar Satellite System (JPSS) OMPS NADIR Total Column Ozone Algorithm Theoretical Basis Document.
[7]
Balis D, Kroon M, Koukouli M E, Brinksma E J, Labow G, Veefkind J P, McPeters R D (2007b). Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations. J Geophys Res, 112(D24): D24s46
CrossRef Google scholar
[8]
Balis D, Lambert J C, Van Roozendael M, Spurr R, Loyola D, Livschitz Y, Valks P, Amiridis V, Gerard P, Granville J, Zehner C (2007a). Ten years of GOME/ERS2 total ozone data—The new GOME data processor (GDP) version 4:2. Ground-based validation and comparisons with TOMS V7/V8. J Geophys Res, 112(D7): D07307
CrossRef Google scholar
[9]
Basher R E (1982). Review of the Dobson spectrophotometer and its accuracy. Global Ozone Research and Monitoring Project. Report 13. Geneva, Switzerland.
[10]
Bass A M, Paur R J (1985). The ultraviolet cross-sections of ozone, I. The Measurements. In: Proceedings of the Quadrennial Ozone Symposium. Halkadikki: Springer, 606–616
[11]
Bernhard G (2005). Bias in Dobson total ozone measurements at high latitudes due to approximations in calculations of ozone absorption coefficients and air mass. J Geophys Res, 110(D10): D10305
CrossRef Google scholar
[12]
Bhartia P K, McPeters R D, Flynn L E, Taylor S, Kramarova N A, Frith S, Fisher B, DeLand M (2013). Solar Backscatter UV (SBUV) total ozone and profile algorithm. Atmospheric Measurement Techniques, 6(10): 2533–2548
CrossRef Google scholar
[13]
Bhartia P K, Wellemeyer C (2002). TOMS-V8 total O3 algorithm. In: Bhartia P K, ed. OMI Algorithm Theoretical Basis Document, vol. II, OMI Ozone Products. NASA Goddard Space Flight Center Greenbelt, Maryland USA. 15–32
[14]
Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Chance K V, Goede A P H (1999). SCIAMACHY: mission objectives and measurement modes. J Atmos Sci, 56(2): 127–150
CrossRef Google scholar
[15]
Brewer A W (1973). A replacement for the Dobson spectrophotometer. Pure Appl Geophys, 106–108(1): 919–927
CrossRef Google scholar
[16]
Cariolle D, Déqué M (1986). Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J Geophys Res, 91(D10): 10825–10846
CrossRef Google scholar
[17]
Crutzen P J, Arnold F (1986). Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime “ozone hole”. Nature, 324(6098): 651–655
CrossRef Google scholar
[18]
Dave J V (1964) Meaning of successive iteration of the auxiliary equatino in the theory of radiative transfer. Astrophy J, 140: 1292
CrossRef Google scholar
[19]
Dave J, Mateer C (1967). A preliminary study on the possibility of estimating total atmosphere ozone from satellite measurements. Journal of Atmospheric Sciences, 24: 414–427
CrossRef Google scholar
[20]
Dittman M G, Ramberg E, Chrisp M, Rodriguez J V, Sparks A L, Zaun N H, Hendershot P, Dixon T, Philbrick R H, Wasinger D (2002). Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS). In: Proceedings of SPIE 4814 Earth Observing Systems VII. Seattle: 111–119
CrossRef Google scholar
[21]
Dobson G M B (1968). Forty years’ research on atmospheric ozone at Oxford: a history. Appl Opt, 7(3): 387–405
CrossRef Google scholar
[22]
Farman J C, Gardiner B G, Shanklin J D (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315(6016): 207–210
CrossRef Google scholar
[23]
Fioletov V E (2005). The Brewer reference triad. Geophys Res Lett, 32(20): L20805
CrossRef Google scholar
[24]
Fioletov V E, Labow G, Evans R, Hare E W, Köhler U, McElroy C T, Miyagawa K, Redondas A, Savastiouk V, Shalamyansky A M, Staehelin J, Vanicek K, Weber M (2008). Performance of the ground-based total ozone network assessed using satellite data. J Geophys Res, 113(D14): D14313
CrossRef Google scholar
[25]
Fioletov V E, Tarasick D W, Petropavlovskikh I (2006). Estimating ozone variability and instrument uncertainties from SBUV2, ozonesonde, Umkehr, and SAGE II measurements: short-term variations. J Geophys Res, 111(D2): D02305
CrossRef Google scholar
[26]
Flynn L, Hornstein J, Hilsenrath E (2004). The ozone mapping and profiler suite (OMPS). In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Alaska: 152–155
CrossRef Google scholar
[27]
Flynn L, Swales D, Niu J, Yu W, Seftor C, Jaross G, Hao Y, Petropavlovskikh I, Long C S (2012). Suomi-NPP product validation for the ozone mapping and profiler suite (OMPS). In: Quadrennial Ozone Symposium (QOS 2012), Toronto
CrossRef Google scholar
[28]
Flynn L E, McNamara D, Beck C T, Petropavlovskikh I, Beach E, Pachepsky Y, Li Y P, Deland M, Huang L K, Long C S, Tiruchirapalli R, Taylor S (2009). Measurements and products from the Solar Backscatter Ultraviolet (SBUV/2) and Ozone Mapping and Profiler Suite (OMPS) instruments. Int J Remote Sens, 30(15–16): 4259–4272
CrossRef Google scholar
[29]
Kerr J B (2002). New methodology for deriving total ozone and other atmospheric variables from Brewer spectrophotometer direct sun spectra. J Geophys Res, 107(D23): 4731
CrossRef Google scholar
[30]
Kerr J B, Asbridge I A, Evans W F J (1988). Intercomparison of total ozone measured by the Brewer and Dobson spectrophotometers at Toronto. J Geophys Res, 93(D9): 11129–11140
CrossRef Google scholar
[31]
Kramarova N A, Frith S M, Bhartia P K, McPeters R D, Taylor S L, Fisher B L, Labow G J, DeLand M T (2013). Validation of ozone monthly zonal mean profiles obtained from the version 8.6 Solar Backscatter Ultraviolet algorithm. Atmos Chem Phys, 13(14): 6887–6905
CrossRef Google scholar
[32]
Kravchenko V, Evtushevsky A, Grytsai A, Milinevsky G, Shanklin J (2009). Total ozone dependence of the difference between the empirically corrected EP-TOMS and high-latitude station datasets. Int J Remote Sens, 30(15–16): 4283–4294
CrossRef Google scholar
[33]
Labow G J, McPeters R D, Bhartia P K, Kramarova N (2013). A comparison of 40 years of SBUV measurements of column ozone with data from the Dobson/Brewer network. J Geophys Res Atmos, 118(13): 7370–7378
CrossRef Google scholar
[34]
Levelt P F, van den Oord G H J, Dobber M R, Malkki A, Visser H, de Vries J, Stammes P, Lundell J O V, Saari H (2006). The ozone monitoring instrument. IEEE Trans Geosci Rem Sens, 44(5): 1093–1101
CrossRef Google scholar
[35]
Malicet J, Daumont D, Charbonnier J, Parisse C, Chakir A, Brion J (1995). Ozone Uv Spectroscopy. II. Absorption Cross-Sections and Temperature-Dependence. J Atmos Chem, 21(3): 263–273
CrossRef Google scholar
[36]
McPeters R, Kroon M, Labow G, Brinksma E, Balis D, Petropavlovskikh I, Veefkind J P, Bhartia P K, Levelt P F (2008). Validation of the Aura Ozone Monitoring Instrument total column ozone product. J Geophys Res, 113(D15): D15S14
CrossRef Google scholar
[37]
McPeters R D, Bhartia P K, Krueger A J, Herman J R, Schlesinger B M, Wellemeyer C G, Cebula R P (1996a). Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) data products user’s guide.
[38]
McPeters R D, Bhartia P K, Krueger A J, Herman J R, Wellemeyer C G, Seftor C J, Cebula R P (1998). Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide. Greenbelt: NASA Reference Publication
[39]
McPeters R D, Hollandsworth S M, Flynn L E, Herman J R, Seftor C J (1996b). Long-term ozone trends derived from the 16 year combined Nimbus 7/Meteor 3 TOMS Version 7 record. Geophys Res Lett, 23(25): 3699–3702
CrossRef Google scholar
[40]
McPeters R D, Labow G J (2012). Climatology 2011: An MLS and sonde derived ozone climatology for satellite retrieval algorithms. J Geophys Res, 117(D10): D10303
CrossRef Google scholar
[41]
Pan C, Weng F, Wu X, Kowalewski M, Jaross G, Flynn L (2012). OMPS Nadir early on-orbit performance evaluation and calibration. In: Shimoda H et al., eds. Proceedings of SPIE 8528, Earth Observing Missions and Sensors: Development, Implementation, and Characterization II. Kyoto: 852806–852806–10
[42]
Redondas A, Evans R, Stuebi R, Köhler U, Weber M (2014). Evaluation of the use of five laboratory-determined ozone absorption cross sections in Brewer and Dobson retrieval algorithms. Atmos Chem Phys, 14(3): 1635–1648
CrossRef Google scholar
[43]
Rodgers C D (1976). Retrieval of Atmospheric-Temperature and Composition from Remote Measurements of Thermal-Radiation. Rev Geophys, 14(4): 609–624
CrossRef Google scholar
[44]
Rodriguez J V, Seftor C J, Wellemeyer C G, Chance K (2003). An Overview of the Nadir Sensor and Algorithms for the NPOESS Ozone Mapping and Profiler Suite (OMPS). In: Proceedings of SPIE 4891 Optical Remote Sensing of the Atmosphere and Clouds III. Hangzhou: 65–75
CrossRef Google scholar
[45]
Scarnato B, Staehelin J, Peter T, Gröbner J, Stübi R (2009). Temperature and slant path effects in Dobson and Brewer total ozone measurements. J Geophys Res, 114(D24): D24303
CrossRef Google scholar
[46]
Scarnato B, Staehelin J, Stübi R, Schill H (2010). Long-term total ozone observations at Arosa (Switzerland) with Dobson and Brewer instruments (1988–2007). J Geophys Res, 115(D13): D13306
CrossRef Google scholar
[47]
Stolarski R S, Krueger A J, Schoeberl M R, McPeters R D, Newman P A, Alpert J C (1986). Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease. Nature, 322(6082): 808–811
CrossRef Google scholar
[48]
Van Roozendael M, Peeters P, Roscoe H K, De Backer H, Jones A E, Bartlett L, Vaughan G, Gouthail F, Pommereau J P, Kyro E, Wahlstrom C, Braathen G, Simon P C (1998). Validation of Ground-Based Visible Measurements of Total Ozone by Comparison with Dobson and Brewer Spectrophotometers. J Atmos Chem, 29(1): 55–83
CrossRef Google scholar
[49]
Van Roozendael M, Spurr R, Loyola D, Lerot C, Balis D, Lambert J C, Zimmer W, van Gent J, van Geffen J, Koukouli M, Granville J, Doicu A, Fayt C, Zehner C (2012). Sixteen years of GOME/ERS-2 total ozone data: The new direct-fitting GOME Data Processor (GDP) version 5—Algorithm description. J Geophys Res, 117(D3): D03305
CrossRef Google scholar
[50]
Varotsos C A (2002). The southern hemisphere ozone hole split in 2002. Environ Sci Pollut Res Int, 9(6): 375–376
CrossRef Google scholar
[51]
Varotsos C A, Chronopoulos G J, Katsikis S, Sakellariou N K (1995). Further evidence of the role of air pollution on solar ultraviolet radiation reaching the ground. Int J Remote Sens, 16(10): 1883–1886
CrossRef Google scholar
[52]
Vasilkov A, Joiner J, Spurr R, Bhartia P K, Levelt P, Stephens G (2008). Evaluation of the OMI cloud pressures derived from rotational Raman scattering by comparisons with other satellite data and radiative transfer simulations. J Geophys Res Atmos, 113(D15): D15S19
CrossRef Google scholar
[53]
Wang W H, Zhang X Y, Wang Y M, Wang Y J, Zhang Z M, Fu L P, Liu G Y (2011). Introduction to the FY-3A total ozone unit: instrument, performance and results. Int J Remote Sens, 32(17): 4749–4758
CrossRef Google scholar
[54]
World Meteorological Organization (2007). Scientific assessment of ozone depletion: 2006. Global Ozone Research and Monitoring Project-Report No. 50, 572pp, Geneva, Switzerland

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 41101037), the National Basic Research Program of China (No. 2010CB951603), the Key Project of Science and Technology Commission of Shanghai Municipality (No.13231203804), and the Fundamental Research Funds for the Central Universities (East China Normal University). The authors thank the Goddard Earth Sciences Data and Information Services Center and the World Ozone and Ultraviolet Data Center for their data support.

RIGHTS & PERMISSIONS

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1430 KB)

Accesses

Citations

Detail

Sections
Recommended

/