Comparison of Suomi-NPP OMPS total column ozone with Brewer and Dobson spectrophotometers measurements

Kaixu BAI , Chaoshun LIU , Runhe SHI , Wei GAO

Front. Earth Sci. ›› 2015, Vol. 9 ›› Issue (3) : 369 -380.

PDF (1430KB)
Front. Earth Sci. ›› 2015, Vol. 9 ›› Issue (3) : 369 -380. DOI: 10.1007/s11707-014-0480-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Comparison of Suomi-NPP OMPS total column ozone with Brewer and Dobson spectrophotometers measurements

Author information +
History +
PDF (1430KB)

Abstract

The objective of this study is to evaluate the accuracy of the daily nadir total column ozone products derived from the nadir mapper instrument on the Ozone Mapping and Profiler Suite (OMPS) flying onboard the Suomi National Polar-orbiting Partnership satellite (S-NPP) launched as a part of the Joint Polar Satellite System (JPSS) program between NOAA and NASA. Since NOAA is already operationally processing OMPS nadir total ozone products, evaluations were made in this study on the total column ozone research products generated by NASA’s science team, utilizing the latest version of their Backscatter Ultraviolet (BUV) retrieval algorithms, to provide insight into the performance of the operation system. Comparisons were made with globally distributed ground-based Brewer and Dobson spectrophotometer total column ozone measurements. Linear regressions show fair agreement between OMPS and ground-based total column ozone measurements with a root-mean-square error (RMSE) of approximately 3% (10 DU). The comparison results indicate that the OMPS total column ozone data are 0.59% higher than the Brewer measurements with a standard deviation of 2.82% while 1.09% higher than the Dobson measurements with a standard deviation of 3.27%. Additionally, the variability of relative differences between OMPS and ground total column ozone were analyzed as a function of latitude, time, viewing geometry, and total column ozone value. Results show a 2% bias over most latitudes and viewing conditions when total column ozone value varies between 220 DU and 450 DU.

Graphical abstract

Keywords

ozone mapping and profiler suite / total column ozone / Brewer / Dobson

Cite this article

Download citation ▾
Kaixu BAI, Chaoshun LIU, Runhe SHI, Wei GAO. Comparison of Suomi-NPP OMPS total column ozone with Brewer and Dobson spectrophotometers measurements. Front. Earth Sci., 2015, 9(3): 369-380 DOI:10.1007/s11707-014-0480-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Antón M, Bortoli D, Costa M J, Kulkarni P S, Domingues A F, Barriopedro D, Serrano A, Silva A M (2011). Temporal and spatial variabilities of total ozone column over Portugal. Remote Sens Environ, 115(3): 855–863

[2]

Antón M, Koukouli M E, Kroon M, McPeters R D, Labow G J, Balis D, Serrano A (2010). Global validation of empirically corrected EP-Total Ozone Mapping Spectrometer (TOMS) total ozone columns using Brewer and Dobson ground-based measurements. J Geophys Res, 115(D19): D19305

[3]

Antón M, López M, Vilaplana J M, Kroon M, McPeters R D, Bañón M, Serrano A M (2009a). Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian peninsula. J Geophys Res, 114(D14): D14307

[4]

Antón M, Loyola D, López M, Vilaplana J M, Bañón M, Zimmer W, Serrano A M (2009b). Comparison of GOME-2/MetOp total ozone data with Brewer spectroradiometer data over the Iberian Peninsula. Ann Geophys, 27(4): 1377–1386

[5]

Bai K X, Liu C S, Shi R H, Zhang Y, Gao W (2013). Global validation of FY-3A total ozone unit (TOU) total ozone columns using ground-based Brewer and Dobson measurements. Int J Remote Sens, 34(14): 5228–5242

[6]

Baker N, Kilcoyne H (2011). Joint Polar Satellite System (JPSS) OMPS NADIR Total Column Ozone Algorithm Theoretical Basis Document.

[7]

Balis D, Kroon M, Koukouli M E, Brinksma E J, Labow G, Veefkind J P, McPeters R D (2007b). Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations. J Geophys Res, 112(D24): D24s46

[8]

Balis D, Lambert J C, Van Roozendael M, Spurr R, Loyola D, Livschitz Y, Valks P, Amiridis V, Gerard P, Granville J, Zehner C (2007a). Ten years of GOME/ERS2 total ozone data—The new GOME data processor (GDP) version 4:2. Ground-based validation and comparisons with TOMS V7/V8. J Geophys Res, 112(D7): D07307

[9]

Basher R E (1982). Review of the Dobson spectrophotometer and its accuracy. Global Ozone Research and Monitoring Project. Report 13. Geneva, Switzerland.

[10]

Bass A M, Paur R J (1985). The ultraviolet cross-sections of ozone, I. The Measurements. In: Proceedings of the Quadrennial Ozone Symposium. Halkadikki: Springer, 606–616

[11]

Bernhard G (2005). Bias in Dobson total ozone measurements at high latitudes due to approximations in calculations of ozone absorption coefficients and air mass. J Geophys Res, 110(D10): D10305

[12]

Bhartia P K, McPeters R D, Flynn L E, Taylor S, Kramarova N A, Frith S, Fisher B, DeLand M (2013). Solar Backscatter UV (SBUV) total ozone and profile algorithm. Atmospheric Measurement Techniques, 6(10): 2533–2548

[13]

Bhartia P K, Wellemeyer C (2002). TOMS-V8 total O3 algorithm. In: Bhartia P K, ed. OMI Algorithm Theoretical Basis Document, vol. II, OMI Ozone Products. NASA Goddard Space Flight Center Greenbelt, Maryland USA. 15–32

[14]

Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Chance K V, Goede A P H (1999). SCIAMACHY: mission objectives and measurement modes. J Atmos Sci, 56(2): 127–150

[15]

Brewer A W (1973). A replacement for the Dobson spectrophotometer. Pure Appl Geophys, 106–108(1): 919–927

[16]

Cariolle D, Déqué M (1986). Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J Geophys Res, 91(D10): 10825–10846

[17]

Crutzen P J, Arnold F (1986). Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime “ozone hole”. Nature, 324(6098): 651–655

[18]

Dave J V (1964) Meaning of successive iteration of the auxiliary equatino in the theory of radiative transfer. Astrophy J, 140: 1292

[19]

Dave J, Mateer C (1967). A preliminary study on the possibility of estimating total atmosphere ozone from satellite measurements. Journal of Atmospheric Sciences, 24: 414–427

[20]

Dittman M G, Ramberg E, Chrisp M, Rodriguez J V, Sparks A L, Zaun N H, Hendershot P, Dixon T, Philbrick R H, Wasinger D (2002). Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS). In: Proceedings of SPIE 4814 Earth Observing Systems VII. Seattle: 111–119

[21]

Dobson G M B (1968). Forty years’ research on atmospheric ozone at Oxford: a history. Appl Opt, 7(3): 387–405

[22]

Farman J C, Gardiner B G, Shanklin J D (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315(6016): 207–210

[23]

Fioletov V E (2005). The Brewer reference triad. Geophys Res Lett, 32(20): L20805

[24]

Fioletov V E, Labow G, Evans R, Hare E W, Köhler U, McElroy C T, Miyagawa K, Redondas A, Savastiouk V, Shalamyansky A M, Staehelin J, Vanicek K, Weber M (2008). Performance of the ground-based total ozone network assessed using satellite data. J Geophys Res, 113(D14): D14313

[25]

Fioletov V E, Tarasick D W, Petropavlovskikh I (2006). Estimating ozone variability and instrument uncertainties from SBUV2, ozonesonde, Umkehr, and SAGE II measurements: short-term variations. J Geophys Res, 111(D2): D02305

[26]

Flynn L, Hornstein J, Hilsenrath E (2004). The ozone mapping and profiler suite (OMPS). In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Alaska: 152–155

[27]

Flynn L, Swales D, Niu J, Yu W, Seftor C, Jaross G, Hao Y, Petropavlovskikh I, Long C S (2012). Suomi-NPP product validation for the ozone mapping and profiler suite (OMPS). In: Quadrennial Ozone Symposium (QOS 2012), Toronto

[28]

Flynn L E, McNamara D, Beck C T, Petropavlovskikh I, Beach E, Pachepsky Y, Li Y P, Deland M, Huang L K, Long C S, Tiruchirapalli R, Taylor S (2009). Measurements and products from the Solar Backscatter Ultraviolet (SBUV/2) and Ozone Mapping and Profiler Suite (OMPS) instruments. Int J Remote Sens, 30(15–16): 4259–4272

[29]

Kerr J B (2002). New methodology for deriving total ozone and other atmospheric variables from Brewer spectrophotometer direct sun spectra. J Geophys Res, 107(D23): 4731

[30]

Kerr J B, Asbridge I A, Evans W F J (1988). Intercomparison of total ozone measured by the Brewer and Dobson spectrophotometers at Toronto. J Geophys Res, 93(D9): 11129–11140

[31]

Kramarova N A, Frith S M, Bhartia P K, McPeters R D, Taylor S L, Fisher B L, Labow G J, DeLand M T (2013). Validation of ozone monthly zonal mean profiles obtained from the version 8.6 Solar Backscatter Ultraviolet algorithm. Atmos Chem Phys, 13(14): 6887–6905

[32]

Kravchenko V, Evtushevsky A, Grytsai A, Milinevsky G, Shanklin J (2009). Total ozone dependence of the difference between the empirically corrected EP-TOMS and high-latitude station datasets. Int J Remote Sens, 30(15–16): 4283–4294

[33]

Labow G J, McPeters R D, Bhartia P K, Kramarova N (2013). A comparison of 40 years of SBUV measurements of column ozone with data from the Dobson/Brewer network. J Geophys Res Atmos, 118(13): 7370–7378

[34]

Levelt P F, van den Oord G H J, Dobber M R, Malkki A, Visser H, de Vries J, Stammes P, Lundell J O V, Saari H (2006). The ozone monitoring instrument. IEEE Trans Geosci Rem Sens, 44(5): 1093–1101

[35]

Malicet J, Daumont D, Charbonnier J, Parisse C, Chakir A, Brion J (1995). Ozone Uv Spectroscopy. II. Absorption Cross-Sections and Temperature-Dependence. J Atmos Chem, 21(3): 263–273

[36]

McPeters R, Kroon M, Labow G, Brinksma E, Balis D, Petropavlovskikh I, Veefkind J P, Bhartia P K, Levelt P F (2008). Validation of the Aura Ozone Monitoring Instrument total column ozone product. J Geophys Res, 113(D15): D15S14

[37]

McPeters R D, Bhartia P K, Krueger A J, Herman J R, Schlesinger B M, Wellemeyer C G, Cebula R P (1996a). Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) data products user’s guide.

[38]

McPeters R D, Bhartia P K, Krueger A J, Herman J R, Wellemeyer C G, Seftor C J, Cebula R P (1998). Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide. Greenbelt: NASA Reference Publication

[39]

McPeters R D, Hollandsworth S M, Flynn L E, Herman J R, Seftor C J (1996b). Long-term ozone trends derived from the 16 year combined Nimbus 7/Meteor 3 TOMS Version 7 record. Geophys Res Lett, 23(25): 3699–3702

[40]

McPeters R D, Labow G J (2012). Climatology 2011: An MLS and sonde derived ozone climatology for satellite retrieval algorithms. J Geophys Res, 117(D10): D10303

[41]

Pan C, Weng F, Wu X, Kowalewski M, Jaross G, Flynn L (2012). OMPS Nadir early on-orbit performance evaluation and calibration. In: Shimoda H et al., eds. Proceedings of SPIE 8528, Earth Observing Missions and Sensors: Development, Implementation, and Characterization II. Kyoto: 852806–852806–10

[42]

Redondas A, Evans R, Stuebi R, Köhler U, Weber M (2014). Evaluation of the use of five laboratory-determined ozone absorption cross sections in Brewer and Dobson retrieval algorithms. Atmos Chem Phys, 14(3): 1635–1648

[43]

Rodgers C D (1976). Retrieval of Atmospheric-Temperature and Composition from Remote Measurements of Thermal-Radiation. Rev Geophys, 14(4): 609–624

[44]

Rodriguez J V, Seftor C J, Wellemeyer C G, Chance K (2003). An Overview of the Nadir Sensor and Algorithms for the NPOESS Ozone Mapping and Profiler Suite (OMPS). In: Proceedings of SPIE 4891 Optical Remote Sensing of the Atmosphere and Clouds III. Hangzhou: 65–75

[45]

Scarnato B, Staehelin J, Peter T, Gröbner J, Stübi R (2009). Temperature and slant path effects in Dobson and Brewer total ozone measurements. J Geophys Res, 114(D24): D24303

[46]

Scarnato B, Staehelin J, Stübi R, Schill H (2010). Long-term total ozone observations at Arosa (Switzerland) with Dobson and Brewer instruments (1988–2007). J Geophys Res, 115(D13): D13306

[47]

Stolarski R S, Krueger A J, Schoeberl M R, McPeters R D, Newman P A, Alpert J C (1986). Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease. Nature, 322(6082): 808–811

[48]

Van Roozendael M, Peeters P, Roscoe H K, De Backer H, Jones A E, Bartlett L, Vaughan G, Gouthail F, Pommereau J P, Kyro E, Wahlstrom C, Braathen G, Simon P C (1998). Validation of Ground-Based Visible Measurements of Total Ozone by Comparison with Dobson and Brewer Spectrophotometers. J Atmos Chem, 29(1): 55–83

[49]

Van Roozendael M, Spurr R, Loyola D, Lerot C, Balis D, Lambert J C, Zimmer W, van Gent J, van Geffen J, Koukouli M, Granville J, Doicu A, Fayt C, Zehner C (2012). Sixteen years of GOME/ERS-2 total ozone data: The new direct-fitting GOME Data Processor (GDP) version 5—Algorithm description. J Geophys Res, 117(D3): D03305

[50]

Varotsos C A (2002). The southern hemisphere ozone hole split in 2002. Environ Sci Pollut Res Int, 9(6): 375–376

[51]

Varotsos C A, Chronopoulos G J, Katsikis S, Sakellariou N K (1995). Further evidence of the role of air pollution on solar ultraviolet radiation reaching the ground. Int J Remote Sens, 16(10): 1883–1886

[52]

Vasilkov A, Joiner J, Spurr R, Bhartia P K, Levelt P, Stephens G (2008). Evaluation of the OMI cloud pressures derived from rotational Raman scattering by comparisons with other satellite data and radiative transfer simulations. J Geophys Res Atmos, 113(D15): D15S19

[53]

Wang W H, Zhang X Y, Wang Y M, Wang Y J, Zhang Z M, Fu L P, Liu G Y (2011). Introduction to the FY-3A total ozone unit: instrument, performance and results. Int J Remote Sens, 32(17): 4749–4758

[54]

World Meteorological Organization (2007). Scientific assessment of ozone depletion: 2006. Global Ozone Research and Monitoring Project-Report No. 50, 572pp, Geneva, Switzerland

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1430KB)

1445

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/