Hyperspectral image classification based on volumetric texture and dimensionality reduction

Hongjun SU , Yehua SHENG , Peijun DU , Chen CHEN , Kui LIU

Front. Earth Sci. ›› 2015, Vol. 9 ›› Issue (2) : 225 -236.

PDF (7184KB)
Front. Earth Sci. ›› 2015, Vol. 9 ›› Issue (2) : 225 -236. DOI: 10.1007/s11707-014-0473-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Hyperspectral image classification based on volumetric texture and dimensionality reduction

Author information +
History +
PDF (7184KB)

Abstract

A novel approach using volumetric texture and reduced-spectral features is presented for hyperspectral image classification. Using this approach, the volumetric textural features were extracted by volumetric gray-level co-occurrence matrices (VGLCM). The spectral features were extracted by minimum estimated abundance covariance (MEAC) and linear prediction (LP)-based band selection, and a semi-supervised k-means (SKM) clustering method with deleting the worst cluster (SKMd) band-clustering algorithms. Moreover, four feature combination schemes were designed for hyperspectral image classification by using spectral and textural features. It has been proven that the proposed method using VGLCM outperforms the gray-level co-occurrence matrices (GLCM) method, and the experimental results indicate that the combination of spectral information with volumetric textural features leads to an improved classification performance in hyperspectral imagery.

Keywords

hyperspectral imagery / image classification / volumetric textural feature / spectral feature / fusion

Cite this article

Download citation ▾
Hongjun SU, Yehua SHENG, Peijun DU, Chen CHEN, Kui LIU. Hyperspectral image classification based on volumetric texture and dimensionality reduction. Front. Earth Sci., 2015, 9(2): 225-236 DOI:10.1007/s11707-014-0473-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Angelo N P, Haertel V (2003). On the application of Gabor filtering in supervised image classification. Int J Remote Sens, 24(10): 2167–2189

[2]

Benediktsson J A, Palmason J A, Sveinsson J R (2005). Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosci Rem Sens, 43(3): 480–491

[3]

Bernabe S, Marpu P R, Plaza A, Mura M D, Benediktsson J A (2014). Spectral-spatial classification of multispectral images using kernel feature space representation. IEEE Geosci Remote Sens Lett, 11(1): 288–292

[4]

Chang C I (2003). Hyperspectral Imaging: Techniques for Spectral Detection and Classification. New York: Kluwer Academic/Plenum Publishers, 13–15

[5]

Chang C I (2013). Hyperspectral Data Processing: Algorithm Design and Analysis. New Jersey: Wiley-Interscience, 1–5

[6]

Chen C, Li W, Tramel E W, Cui M, Prasad S, Fowler J E (2014a). Spectral–spatial preprocessing using multihypothesis prediction for noise-robust hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(4): 1047–1059

[7]

Chen C, Li W, Tramel E W, Fowler J E (2014b). Reconstruction of hyperspectral imagery from random projections using multihypothesis prediction. IEEE Trans Geosci Rem Sens, 52(1): 365–374

[8]

Gamba P, Dell’ Acqua F, Lisini G, Trianni G (2007). Improved VHR urban area mapping exploiting object boundaries. IEEE Trans Geosci Rem Sens, 45(8): 2676–2682

[9]

Haralick R M, Shanmugam K, Dinstein I H (1973). Texture features for image classification. IEEE Trans Syst Man Cybern, 3(6): 610–621

[10]

Huang X, Zhang L, Gong W (2011). Information fusion of aerial images and LIDAR data in urban areas: vector stacking, re-classification, and post-processing approaches. Int J Remote Sens, 32(1): 69–84

[11]

Jackson Q, Landgrebe D (2002). Adaptive bayesian contextual classification based on markov random fields. IEEE Trans Geosci Rem Sens, 40(11): 2454–2463

[12]

Li J, Bioucas-Dias J, Plaza A (2012). Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields. IEEE Trans Geosci Rem Sens, 50(3): 809–823

[13]

Liu K, Du Q, Yang H, Ma B (2010). Optical flow and principle component analysis-based motion detection in outdoor videos. EURASIP J Adv Signal Process, 2010: 680623

[14]

Liu K, Ma B, Du Q, Chen G (2012). Fast motion detection from airborne videos using graphics processing units. J Appl Remote Sens, 6(1): 061505

[15]

Marceau D J, Howarth P J, Dubois J M, Gratton D J (1990). Evaluation of the grey-level co-occurrence matrix method, for land-cover classification using SPOT imagery. IEEE Trans Geosci Rem Sens, 28(4): 513–519

[16]

Mokji M M, Bakar S A R A (2007). Adaptive thresholding based on co-occurrence matrix edge information. Journal of Computers, 2(8): 44–52

[17]

Mura M D, Villa A, Benediktsson J A, Chanussot J, Bruzzone L (2011). Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci Remote Sens Lett, 8(3): 541–545

[18]

Nyoungui A N, Tonye E, Akono A (2002). Evaluation of speckle filtering and texture analysis methods for land cover classification from SAR images. Int J Remote Sens, 23(9): 1895–1925

[19]

Plaza J, Plaza A, Barra C (2009). Multi-channel morphological profiles for classification of hyperspectral image data using support vector machines. Sensors (Basel Switzerland), 9(1): 196–218

[20]

Rahman A F, Gamon J A, Sims D A, Schmidts M (2003). Optimum pixel size for hyperspectral studies of ecosystem function in southern California chaparral and grassland. Remote Sens Environ, 84(2): 192–207

[21]

Rajadell O, Garcia-Sevilla P, Pla F (2013). Spectral–spatial pixel characterization using gabor filters for hyperspectral image classification. IEEE Geosci Remote Sens Lett, 10(4): 860–864

[22]

Su H, Du Q (2012). Hyperspectral band clustering and band selection for urban land cover classification. Geocarto Int, 27(5): 395–411

[23]

Su H, Sheng Y, Du P, Liu K (2012). Adaptive affinity propagation with spectral angle mapper for semi-supervised hyperspectral band selection. Appl Opt, 51(14): 2656–2663

[24]

Su H, Yang H, Du Q, Sheng Y (2011). Semi-supervised band clustering for dimensionality reduction of hyperspectral imagery. IEEE Geosci Remote Sens Lett, 8(6): 1135–1139

[25]

Tsai F, Chang C K, Rau J Y, Lin T H, Liu G R (2007). 3D computation of gray level co-occurrence in hyperspectral image cubes. Lect Notes Comput Sci, 4679: 429–440

[26]

Yang H, Du Q, Su H, Sheng Y (2011). An efficient method for supervised hyperspectral band selection. IEEE Geosci Remote Sens Lett, 8(1): 138–142

[27]

Yang H, Ma B, Du Q, Yang C (2010). Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information. J Appl Remote Sens, 4(1): 041890

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (7184KB)

1327

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/