Retrievals of aerosol optical depth and total column ozone from Ultraviolet Multifilter Rotating Shadowband Radiometer measurements based on an optimal estimation technique
Chaoshun LIU, Maosi CHEN, Runhe SHI, Wei GAO
Retrievals of aerosol optical depth and total column ozone from Ultraviolet Multifilter Rotating Shadowband Radiometer measurements based on an optimal estimation technique
A Bayesian optimal estimation (OE) retrieval technique was used to retreive aerosol optical depth (AOD), aerosol single scattering albedo (SSA), and an asymmetry factor (g) at seven ultraviolet wavelengths, along with total column ozone (TOC), from the measurements of the UltraViolet Multifilter Rotating Shadowband Radiometer (UV-MFRSR) deployed at the Southern Great Plains (SGP) site during March through November in 2009. The OE technique specifies appropriate error covariance matrices and optimizes a forward model (Tropospheric ultraviolet radiative transfer model, TUV), and thus provides a supplemental method for use across the network of the Department of Agriculture UV-B Monitoring and Research Program (USDA UVMRP) for the retrieval of aerosol properties and TOC with reasonable accuracy in the UV spectral range under various atmospheric conditions. In order to assess the accuracy of the OE technique, we compared the AOD retreivals from this method with those from Beer’s Law and the AErosol RObotic Network (AERONET) AOD product. We also examine the OE retrieved TOC in comparison with the TOC from the U.S. Department of Agriculture UV-B Monitoring and Research Program (USDA UVMRP) and the Ozone Monitoring Instrument (OMI) satellite data. The scatterplots of the estimated AOD from the OE method agree well with those derived from Beer’s law and the collocated AERONET AOD product, showing high values of correlation coefficients, generally 0.98 and 0.99, and large slopes, ranging from 0.95 to 1.0, as well as small offsets, less than 0.02 especially at 368 nm. The comparison of TOC retrievals also indicates the promising accuracy of the OE method in that the standard deviations of the difference between the OE derived TOC and other TOC products are about 5 to 6 Dobson Units (DU). Validation of the OE retrievals on these selected dates suggested that the OE technique has its merits and can serve as a supplemental tool in further analyzing UVMRP data.
optimal estimation / aerosol optical depth / total column ozone / Ultraviolet Multifilter Rotating Shadowband Radiometer (UV-MFRSR) / Aerosol Robotic Network (AERONET) / Tropospheric ultraviolet radiative transfer model (TUV)
[1] |
Alexandrov M D, Lacis A A, Carlson B E, Cairns B (2008). Characterization of atmospheric aerosols using MFRSR measurements. J Geophys Res, 113(D8): D08204
CrossRef
Google scholar
|
[2] |
Alexandrov M D, Marshak A, Cairns B, Lacis A A, Carlson B E (2004). Automated cloud screening algorithm for MFRSR data. Geophys Res Lett, 31(4): L04118
CrossRef
Google scholar
|
[3] |
Antón M, López M, Vilaplana J, Kroon M, McPeters R, Bañón M, Serrano A (2009). Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian peninsula. J Geophys Res, 114(D14): D14307
CrossRef
Google scholar
|
[4] |
Antón M, Loyola D, Clerbaux C, López M, Vilaplana J, Banón M, Hadji-Lazaro J, Valks P, Hao N, Zimmer W, Coheur P F, Hurtmans D, Alados-Arboledas L (2011). Validation of the Metop-A total ozone data from GOME-2 and IASI using reference ground-based measurements at the Iberian Peninsula. Remote Sens Environ, 115(6): 1380–1386
CrossRef
Google scholar
|
[5] |
Augustine J A, Cornwall C R, Hodges G B, Long C N, Medina C I, DeLuisi J J (2003). An automated method of MFRSR calibration for aerosol optical depth analysis with application to an Asian dust outbreak over the United States. J Appl Meteorol, 42(2): 266–278
CrossRef
Google scholar
|
[6] |
Balis D, Kroon M, Koukouli M, Brinksma E, Labow G, Veefkind J, McPeters R (2007). Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations. J Geophys Res, 112(D24): D24S46
CrossRef
Google scholar
|
[7] |
Balis D S, Amiridis V, Zerefos C, Kazantzidis A, Kazadzis S, Bais A F, Meleti C, Gerasopoulos E, Papayannis A, Matthias V, Dier H, Andreae M O (2004). Study of the effect of different type of aerosols on UV-B radiation from measurements during EARLINET. Atmos Chem Phys, 4(2): 307–321
CrossRef
Google scholar
|
[8] |
Bigelow D, Slusser J, Beaubien A, Gibson J (1998). The USDA ultraviolet radiation monitoring program. Bull Am Meteorol Soc, 79(4): 601–615
CrossRef
Google scholar
|
[9] |
Bodhaine B A, Wood N B, Dutton E G, Slusser J R (1999). On Rayleigh optical depth calculations. J Atmos Ocean Technol, 16(11): 1854–1861
CrossRef
Google scholar
|
[10] |
Bordewijk J, Slaper H, Reinen H, Schlamann E (1995). Total solar radiation and the influence of clouds and aerosols on the biologically effective UV. Geophys Res Lett, 22(16): 2151–2154
CrossRef
Google scholar
|
[11] |
Caldwell M M (1971). Solar UV irradiation and the growth and development of higher plants. Photophysiology, 6(13): l–177
|
[12] |
Chen M, Davis J, Tang H, Ownby C, and Gao W (2013). The calibration methods for Multi-Filter Rotating Shadowband Radiometer: a review. Front Earth Sci, 7(3): 257–270
|
[13] |
Gallagher R P, Lee T K (2006). Adverse effects of ultraviolet radiation: a brief review. Prog Biophys Mol Biol, 92(1): 119–131
CrossRef
Google scholar
|
[14] |
Gao W, Slusser J, Gibson J, Scott G, Bigelow D, Kerr J, McArthur B (2001). Direct-sun column ozone retrieval by the ultraviolet multifilter rotating shadow-band radiometer and comparison with those from Brewer and Dobson spectrophotometers. Appl Opt, 40(19): 3149–3155
CrossRef
Google scholar
|
[15] |
Goering C D, L'Ecuyer T S, Stephens G L, Slusser J R, Scott G, Davis J, Barnard J C, Madronich S (2005). Simultaneous retrievals of column ozone and aerosol optical properties from direct and diffuse solar irradiance measurements. J Geophys Res, 110(D5): D05204
CrossRef
Google scholar
|
[16] |
Herman B, Browning R, De Luisi J (1975). Determination of the effective imaginary term of the complex refractive index of atmospheric dust by remote sensing: the diffuse-direct radiation method. J Atmos Sci, 32(5): 918–925
CrossRef
Google scholar
|
[17] |
Holben B, Eck T, Slutsker I, Tanre D, Buis J, Setzer A, Vermote E, Reagan J, Kaufman Y, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998). AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens Environ, 66(1): 1–16
CrossRef
Google scholar
|
[18] |
Inamdar A K, French A, Hook S, Vaughan G, Luckett W (2008). Land surface temperature retrieval at high spatial and temporal resolutions over the southwestern United States. J Geophys Res, 113(D7): D07107
CrossRef
Google scholar
|
[19] |
Kakani V, Reddy K, Zhao D, Sailaja K (2003). Field crop responses to ultraviolet-B radiation: a review. Agric Meteorol, 120(1): 191–218
CrossRef
Google scholar
|
[20] |
Krotkov N, Bhartia P K, Herman J, Slusser J, Labow G, Scott G, Janson G, Eck T F, Holben B (2005). Aerosol ultraviolet absorption experiment (2002 to 2004), part 1: ultraviolet multifilter rotating shadowband radiometer calibration and intercomparison with CIMEL sunphotometers. Opt Eng, 44(4): 041001–041017
|
[21] |
Lee K H, Li Z, Cribb M, Liu J, Wang L, Zheng Y, Xia X, Chen H, Li B (2010). Aerosol optical depth measurements in eastern China and a new calibration method. J Geophys Res, 115: D00K11
|
[22] |
McComiskey A, Schwartz S E, Schmid B, Guan H, Lewis E R, Ricchiazzi P, Ogren J A (2008). Direct aerosol forcing: calculation from observables and sensitivities to inputs. J Geophys Res, 113(D9): D09202
CrossRef
Google scholar
|
[23] |
Medina R, Fitzgerald R M, Min Q (2012). Retrieval of the single scattering albedo in the El Paso-Juarez Airshed using the TUV model and a UV-MFRSR radiometer. Atmos Environ, 46(0): 430–440
CrossRef
Google scholar
|
[24] |
Meloni D, Di Sarra A, Pace G, Monteleone F (2006). Aerosol optical properties at Lampedusa (Central Mediterranean). 2. Determination of single scattering albedo at two wavelengths for different aerosol types. Atmos Chem Phys, 6(3): 715–727
CrossRef
Google scholar
|
[25] |
Morcrette J J (2002). Assessment of the ECMWF model cloudiness and surface radiation fields at the ARM SGP site. Mon Weather Rev, 130(2): 257–277
CrossRef
Google scholar
|
[26] |
Perrin J M, Thuillier G, Fehrenbach M, Huppert F (2005). A comparison between radiative transfer calculation and pyranometer data gathered at Observatoire de Haute Provence. J Atmos Sol Terr Phys, 67(5): 449–463
CrossRef
Google scholar
|
[27] |
Petters J, Saxena V, Slusser J, Wenny B, Madronich S (2003). Aerosol single scattering albedo retrieved from measurements of surface UV irradiance and a radiative transfer model. J Geophys Res, 108(D9): 4288
CrossRef
Google scholar
|
[28] |
Prather M J, Watson R T (1990). Stratospheric ozone depletion and future levels of atmospheric chlorine and bromine. Nature, 344(6268): 729–734
CrossRef
Google scholar
|
[29] |
Ricchiazzi P, Yang S, Gautier C, Sowle D (1998). SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere. Bull Am Meteorol Soc, 79(10): 2101–2114
CrossRef
Google scholar
|
[30] |
Rodgers C D (2000). Inverse Methods for Atmospheric Sounding: Theory and Practice. Hackensack: World Scientific
|
[31] |
Rötter R, Van de Geijn S (1999). Climate change effects on plant growth, crop yield and livestock. Clim Change, 43(4): 651–681
CrossRef
Google scholar
|
[32] |
Slusser J, Gibson J, Bigelow D, Kolinski D, Disterhoft P, Lantz K, Beaubien A (2000). Langley method of calibrating UV filter radiometers. J Geophys Res, 105(D4): 4841–4849
CrossRef
Google scholar
|
[33] |
Slusser J, Gibson J, Bigelow D, Kolinski D, Mou W, Koenig G, Beaubien A (1999). Comparison of column ozone retrievals by use of an UV multifilter rotating shadow-band radiometer with those from Brewer and Dobson spectrophotometers. Appl Opt, 38(9): 1543–1551
CrossRef
Google scholar
|
[34] |
Solomon S (1999). Stratospheric ozone depletion: a review of concepts and history. Rev Geophys, 37(3): 275–316
CrossRef
Google scholar
|
[35] |
Stamnes K, Tsay S C, WiscombeW, Jayaweera K (1988). Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl Opt, 27(12): 2502–2509
CrossRef
Google scholar
|
[36] |
Stokes G M, Schwartz S E (1994). The Atmospheric Radiation Measurement (ARM) Program: programmatic background and design of the cloud and radiation test bed. Bull Am Meteorol Soc, 75(7): 1201–1221
CrossRef
Google scholar
|
[37] |
Stolarski R S, Bloomfield P, McPeters R D, Herman J R (1991). Total ozone trends deduced from Nimbus 7 TOMS data. Geophys Res Lett, 18(6): 1015–1018
CrossRef
Google scholar
|
[38] |
Taylor T E, L'Ecuyer T S, Slusser J R, Stephens G L, Goering C D (2008). An operational retrieval algorithm for determining aerosol optical properties in the ultraviolet. J Geophys Res, 113(D3): D03201
CrossRef
Google scholar
|
[39] |
Zepp R, Erickson Iii D, Paul N, Sulzberger B (2007). Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem Photobiol Sci, 6(3): 286–300
CrossRef
Google scholar
|
/
〈 | 〉 |