SolidEarth: a new Digital Earth system for the modeling and visualization of the whole Earth space

Liangfeng ZHU , Jianzhong SUN , Changling LI , Bing ZHANG

Front. Earth Sci. ›› 2014, Vol. 8 ›› Issue (4) : 524 -539.

PDF (7680KB)
Front. Earth Sci. ›› 2014, Vol. 8 ›› Issue (4) : 524 -539. DOI: 10.1007/s11707-014-0438-7
RESEARCH ARTICLE
RESEARCH ARTICLE

SolidEarth: a new Digital Earth system for the modeling and visualization of the whole Earth space

Author information +
History +
PDF (7680KB)

Abstract

Although many of the first-generation Digital Earth systems have proven to be quite useful for the modeling and visualization of geospatial objects relevant to the Earth’s surface and near-surface, they were not designed for the purpose of modeling and application in geological or atmospheric space. There is a pressing need for a new Digital Earth system that can process geospatial information with full dimensionality. In this paper, we present a new Digital Earth system, termed SolidEarth, as an alternative virtual globe for the modeling and visualization of the whole Earth space including its surface, interior, and exterior space. SolidEarth consists of four functional components: modeling in geographical space, modeling in geological space, modeling in atmospheric space, and, integrated visualization and analysis. SolidEarth has a comprehensive treatment to the third spatial dimension and a series of sophisticated 3D spatial analysis functions. Therefore, it is well-suited to the volumetric representation and visual analysis of the inner/outer spheres in Earth space. SolidEarth can be used in a number of fields such as geoscience research and education, the construction of Digital Earth applications, and other professional practices of Earth science.

Keywords

Digital Earth / Earth space / full dimensionality / visualization

Cite this article

Download citation ▾
Liangfeng ZHU, Jianzhong SUN, Changling LI, Bing ZHANG. SolidEarth: a new Digital Earth system for the modeling and visualization of the whole Earth space. Front. Earth Sci., 2014, 8(4): 524-539 DOI:10.1007/s11707-014-0438-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bailey J E, Chen A (2011). The role of Virtual Globes in geoscience. Comput Geosci, 37(1): 1–2

[2]

Bernardin T, Cowgill E, Kreylos O, Bowles C, Gold P, Hamann B, Kellogg L (2011). Crusta: a new virtual globe for real-time visualization of sub-meter digital topography at planetary scales. Comput Geosci, 37(1): 75–85

[3]

Bilitza D (2001). International Reference Ionosphere 2000. Radio Sci, 36(2): 261–275

[4]

Butler D (2006). Virtual globes: the web-wide world. Nature, 439(7078): 776–778

[5]

Calcagno P, Chilès J P, Courrioux G, Guillen A (2008). Geological modelling from field data and geological knowledge: part I. Modelling method coupling 3D potential-field interpolation and geological rules. Phys Earth Planet Inter, 171(1–4): 147–157

[6]

Craglia M, de Bie K, Jackson D, Pesaresi M, Remetey-Fülöpp G, Wang C, Annoni A, Bian L, Campbell F, Ehlers M, van Genderen J, Goodchild M, Guo H, Lewis A, Simpson R, Skidmore A, Woodgate P (2012). Digital Earth 2020: towards the vision for the next decade. Int J Digital Earth, 5(1): 4–21

[7]

Craglia M, Goodchild M F, Annoni A, Camara G, Gould M, Kuhn W, Mark D, Masser I, Maguire D, Liang S, Parsons E (2008). Next-generation Digital Earth: a position paper from the Vespucci Initiative for the advancement of Geographic Information Science. Int J Spatial Data Infrastructures Res, 3: 146–167

[8]

de Floriani L, Falcidieno B (1988). A hierarchical boundary model for solid object representation. ACM Trans Graph, 7(1): 42–60

[9]

De Paor D G, Whitmeyer S J (2011). Geological and geophysical modeling on virtual globes using KML, COLLADA, and Javascript. Comput Geosci, 37(1): 100–110

[10]

Denver L F, Phillips D C (1990). Stratigraphic geocellular modeling. Geobyte, 5: 45–47

[11]

Dong S, Li T, Gao R, Hou H, Li Q, Li Y, Zhang S, Keller G R, Liu M (2011). A multidisciplinary Earth science research program in China. Eos Trans AGU, 92(38): 313–314

[12]

Dziewonski A M, Anderson D L (1981). Preliminary reference Earth model. Phys Earth Planet Inter, 25(4): 297–356

[13]

Fowler C M R (2005). The Solid Earth: An Introduction to Global Geophysics (2nd ed). Cambridge: Cambridge University Press, 685

[14]

Goodchild M F (2008). The use cases of digital earth. Int J Digital Earth, 1(1): 31–42

[15]

Goodchild M F (2012). Discrete global grids: retrospect and prospect. Geography and Geo-Information Science, 28(1): 1–6

[16]

Goodchild M F, Guo H, Annoni A, Bian L, de Bie K, Campbell F, Craglia M, Ehlers M, van Genderen J, Jackson D, Lewis A J, Pesaresi M, Remetey-Fülöpp G, Simpson R, Skidmore A, Wang C, Woodgate P (2012). Next-generation Digital Earth. Proc Natl Acad Sci USA, 109(28): 11088–11094

[17]

Gore A (1999). The Digital Earth: Understanding our planet in the 21st Century. Photogramm Eng Remote Sensing, 65: 528–530

[18]

Guillen A, Calcagno P, Courrioux G, Joly A, Ledru P (2008). Geological modelling from field data and geological knowledge: part II. Modelling validation using gravity and magnetic data inversion. Phys Earth Planet Inter, 171(1–4): 158–169

[19]

Guo H (2012). Digital Earth: a new challenge and new vision. Int J Digital Earth, 5(1): 1–3

[20]

Hack R, Orlic B, Ozmutlu S, Zhu S, Rengers N (2006). Three and more dimensional modeling in geo-engineering. Bull Eng Geol Environ, 65(2): 143–153

[21]

Jones C B (1989). Data structures for three-dimensional spatial information systems in geology. Int J Geogr Inform Syst, 3: 15–31

[22]

Kennett B L N, Engdahl E R, Buland R (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophys J Int, 122(1): 108–124

[23]

Li J, Wu H, Yang C, Wong D W, Xie J (2011). Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD strategy within virtual globes. Comput Geosci, 37(9): 1295–1302

[24]

Li Z, Openshaw S (1993). A natural principle for the objective generalization of digital maps. Cartography and Geographic Information Systems, 20(1): 19–29

[25]

Martínez-Graña A M, Goy J L, Cimarra C A (2013). A virtual tour of geological heritage: valourising geodiversity using Google Earth and QR code. Comput Geosci, 61: 83–93

[26]

Mooney W D, Laske G, Masters T G (1998). CRUST 5.1: a global crustal model at 5°×5°. J Geophys Res, 103(B1): 727–747

[27]

Navin J, de Hoog M (2011). Presenting geoscience using virtual globes. AusGeo News, 104: 15–19

[28]

Picone J M, Hedin A E, Drob D P, Aikin A C (2002). NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res, 107(A12): 1468–1483

[29]

Postpischl L, Danecek P, Morelli A, Pondrelli S (2011). Standardization of seismic tomographic models and earthquake focal mechanisms data sets based on web technologies, visualization with keyhole markup language. Comput Geosci, 37(1): 47–56

[30]

Royse K R, Rutter H K, Entwisle D C (2009). Property attribution of 3D geological models in the Thames Gateway, London: new ways of visualising geoscientific information. Bull Eng Geol Environ, 68(1): 1–16

[31]

Shen D, Wong D W, Camelli F, Liu Y (2013). An ArcScene plug-in for volumetric data conversion, modeling and spatial analysis. Comput Geosci, 61: 104–115

[32]

Turner A K (2006). Challenges and trends for geological modelling and visualization. Bull Eng Geol Environ, 65(2): 109–127

[33]

Wang P, Xu Q, Li J S (2005). 3D modeling and visualization simulation of near-earth space environment elements. Journal of System Simulation, 17: 2957–2960 (in Chinese)

[34]

Wang Y, Huynh G, Williamson C (2013). Integration of Google Maps/Earth with microscale meteorology models and data visualization. Comput Geosci, 61: 23–31

[35]

Wu L X (2004). Topological relations embodied in a generalized tri-prism (GTP) model for a 3D geoscience modeling system. Comput Geosci, 30(4): 405–418

[36]

Wu Q, Xu H (2004). On three-dimensional geological modeling and visualization. Sci China Earth Sci, 47(8): 739–748

[37]

Wu Q, Xu H, Zou X (2005). An effective method for 3D geological modeling with multi-source data integration. Comput Geosci, 31(1): 35–43

[38]

Yang C, Raskin R, Goodchild M, Gahegan M (2010). Geospatial cyberinfrastructure: past, present and future. Comput Environ Urban Syst, 34(4): 264–277

[39]

Yu J Q, Wu L X, Zi G J, Guo Z Z (2012). SDOG-based multi-scale 3D modeling and visualization on global lithosphere. Sci China Earth Sci, 55(6): 1012–1020

[40]

Yu L, Gong P (2012). Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives. Int J Remote Sens, 33(12): 3966–3986

[41]

Zhang L Q, Guo Z F, Kang Z Z, Zhang L X, Zhang X M, Yang L (2009). Web-based visualization of spatial objects in 3DGIS. Sci China Inform. Sci., 52: 1588–1597

[42]

Zhu L, Wang X, Zhang B (2014). Modeling and visualizing borehole information on virtual globes using KML. Comput Geosci, 62: 62–70

[43]

Zhu L, Zhang C, Li M, Pan X, Sun J (2012). Building 3D solid models of sedimentary stratigraphic systems from borehole data: an automatic method and case studies. Eng Geol, 127: 1–13

[44]

Zhu L, Zhuang Z (2010). Framework system and research flow of uncertainty in 3D geological structure models. Min Sci Technol, 20: 306–311

[45]

Zhu Q, Gong J, Zhang Y (2007). An efficient 3D R-tree spatial index method for virtual geographic environments. ISPRS J Photogramm Remote Sens, 62(3): 217–224

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (7680KB)

1342

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/