Variations of sea ice in the Antarctic and Arctic from 1997–2006

Huijie DONG , Xiaolei ZOU

Front. Earth Sci. ›› 2014, Vol. 8 ›› Issue (3) : 385 -392.

PDF (1472KB)
Front. Earth Sci. ›› 2014, Vol. 8 ›› Issue (3) : 385 -392. DOI: 10.1007/s11707-014-0422-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Variations of sea ice in the Antarctic and Arctic from 1997–2006

Author information +
History +
PDF (1472KB)

Abstract

Sea ice in polar areas is an important part of the global climate system. In order to obtain variations in sea ice extent for the Antarctic and Arctic, this paper analyzed the Special Sensor Microwave/Imager (SSM/I) sea ice data product dating from March 1, 1997 to December 31, 2006. During this period, the sea ice extent increased in the Antarctic with the trend of (0.5467±0.4933)×104 km2·yr–1, and decreased in the Arctic with the trend of (–7.6125±0.3503)×104 km2·yr–1. In different sectors of the Antarctic, variations of the sea ice extent are different. The sea ice extent increased in the Weddell Sea and Indian Ocean, but decreased in the Ross Sea, Western Pacific Ocean, and Bellingshausen/Amundsen Seas.

Keywords

sea ice concentration (SICN) / sea ice extent / linear trend

Cite this article

Download citation ▾
Huijie DONG, Xiaolei ZOU. Variations of sea ice in the Antarctic and Arctic from 1997–2006. Front. Earth Sci., 2014, 8(3): 385-392 DOI:10.1007/s11707-014-0422-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bian L G, Chen B L, Xin Y F (2007). Polar meteorology and global change. Meteorol Monogr, 33: 3–9 (in Chinese)

[2]

Budikova D (2009). Role of Arctic sea ice in global atmospheric circulation: a review. Global Planet Change, 68(3): 149–163

[3]

Cavalieri D J (1992). The validation of geophysical products using multsensor Data. In: Carsey F ed. Microwave Remote Sensing of Sea Ice. Washington, D. C: American Geophysical Union, 68: 232–255

[4]

Cavalieri D J, Parkinson C L (2012). Arctic sea ice variability and trends, 1979–2010. Cryophere, 6(4): 881–889

[5]

Comiso J C, Parkinson C L, Gersten R, Stock L (2008). Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35: L01703, doi: 10.1029/2007GL031972

[6]

Curry J A, Schramm J L, Ebert E E (1995). Sea ice-albedo climate feedback mechanism. J Clim, 8(2): 240–247

[7]

Gloersen P, Campbell W J (1991). Recent variations in Arctic and Antarctic sea ice covers. Nature, 352(6330): 33–36

[8]

Gloersen P, Campbell W J, Cavalieri D J, Comiso J C, Parkinson C L, Zwally H J (1993). Satellite passive microwave observations and analysis of Arctic and Antarctic sea ice, 1978–1987. Ann Glaciol, 17: 149–154

[9]

Holland M M, Bitz C M (2003). Polar amplification of climate change in coupled models. Clim Dyn, 21(3–4): 221–232

[10]

Hollinger J P, Peirce J L, Poe G A (1990). SSM/I instrument evaluation. Transaction on Geo science and Remote Sensing, 28, 5: 781–790

[11]

Jaiser R, Dethloff K, Handorf D, Rinke A, Cohen J (2012). Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus, 64: 11595

[12]

Julienne S, Maslanik J, Li X M (1998). An intercomparison of DMSP F11 and F13 derived sea ice products. Remote Sens Environ, 64(2): 132–152

[13]

McBean G, Alekseev G, Chen D, Førland E, Fyfe J, Groisman P Y, King R, Melling H, Vose R, Whitfield P H (2005). Arctic climate: past and present. Arctic Climate Impact Assessment (ACIA) Scientific Report

[14]

Overland J, Wang M (2005). The Arcitc climate paradox: the recent decrease of the Arctic Oscillation. Geophys Res Lett, 32(6): L06701, doi: 10.1029/2004GL021752

[15]

Overland J, Wang M (2010). Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A: 1–9

[16]

Parkinson C L, Cavalieri D J (2012). Antarctic sea ice variability and trends, 1979–2010. Cryosphere Discuss, 6(2): 931–956

[17]

Parkinson C L, Cavalieri D J, Gloersen P, Zwally H J, Comiso J C (1999). Arctic sea ice extent, areas, and trends, 1978–1996. J Geophys Res, 104(C9): 20837–20856

[18]

Shokr M, Markus T (2006). Comparison of NASA team2 and AES-York ice concentration algorithms against operational ice chars from the Canadian ice service. IEEE Trans Geosci Rem Sens, 44(8): 2164–2175

[19]

Simmonds I, Jacka T H (1995). Relationships between the interannual variability of Antarctic sea ice and the Southern Oscillation. J Clim, 8(3): 637–647

[20]

Steffen K, Key J, Cavalieri D J, Comiso J C, Gloersen P, Germain K, Rubinstein I (1992). The estimation of geophysical parameters using passive microwave algorithms, In: Carsey F ed. Microwave Remote Sensing of Sea Ice. Washington, D. C: American Geophysical Union, 68: 201–231

[21]

Stroeve J C, Serreze M C, Holland M M, Kay J E, Malanik J, Barrett A P (2012). The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change, 110(3–4): 1005–1027

[22]

Wang J, Ikeda M (2000). Arctic Oscillation and Arctic Sea-Ice Oscillation. Geophys Res Lett, 27(9): 1287–1290

[23]

Wu B, Wang J, Walsh J (2004). Possible feedback of winter sea ice in the Greenland and Barents seas on the local atmosphere. Mon Weather Rev, 132(7): 1868–1876

[24]

Yuan X (2004). ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarct Sci, 16(4): 415–425

[25]

Zwally H J, Comiso J C, Parkinson C L, Cavalieri D J, Gloersen P (2002). Varaiability of Antarctic sea ice 1979–1998. Journal of Geophysical Research, 107(C5): 3041, doi: 10.1029/2000JC000732

[26]

Zou X (2012). Climate trend detection and its sensitivity to measurement precision. Advances in Meteorological Science and Technology, 2: 41–43 (in Chinese)

[27]

Zou X, Zeng Z (2006). A quality control procedure for GPS radio occultation data. J Geophys Res, 111(D2): D02112, doi: 10.1029/2005JD005846

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1472KB)

1185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/