A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data

Jiangyuan ZENG, Zhen LI, Quan CHEN, Haiyun BI

PDF(1613 KB)
PDF(1613 KB)
Front. Earth Sci. ›› 2014, Vol. 8 ›› Issue (3) : 427-438. DOI: 10.1007/s11707-014-0412-4
RESEARCH ARTICLE
RESEARCH ARTICLE

A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data

Author information +
History +

Abstract

A simplified physically-based algorithm for surface soil moisture inversion from satellite microwave radiometer data is presented. The algorithm is based on a radiative transfer model, and the assumption that the optical depth of the vegetation is polarization independent. The algorithm combines the effects of vegetation and roughness into a single parameter. Then the microwave polarization difference index (MPDI) is used to eliminate the effects of surface temperature, and to obtain soil moisture, through a nonlinear iterative procedure. To verify the present algorithm, the 6.9 GHz dual-polarized brightness temperature data from the Advanced Microwave Scanning Radiometer (AMSR-E) were used. Then the soil moisture values retrieved by the present algorithm were validated by in-situ data from 20 sites in the Tibetan Plateau, and compared with both the NASA AMSR-E soil moisture products, and Soil Moisture and Ocean Salinity (SMOS) soil moisture products. The results show that the soil moisture retrieved by the present algorithm agrees better with ground measurements than the two satellite products. The advantage of the algorithm is that it doesn’t require field observations of soil moisture, surface roughness, or canopy biophysical data as calibration parameters, and needs only single-frequency brightness temperature observations during the whole retrieval process.

Keywords

passive microwave remote sensing / soil moisture / inversion / AMSR-E / SMOS

Cite this article

Download citation ▾
Jiangyuan ZENG, Zhen LI, Quan CHEN, Haiyun BI. A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data. Front. Earth Sci., 2014, 8(3): 427‒438 https://doi.org/10.1007/s11707-014-0412-4

References

[1]
Anterrieu E, Khazaal A (2011). One year of RFI detection and quantification with L1a signals provided by SMOS reference radiometers. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2245–2248
[2]
Becker F, Choudhury B J (1988). Relative sensitivity of normalized difference vegetation index (NDVI) and microwave polarization difference index (MPDI) for vegetation and desertification monitoring. Remote Sens Environ, 24(2): 297–311
CrossRef Google scholar
[3]
Berthon L, Mialon A, Cabot F, Bitar A A, Richaume P, Kerr Y, Leroux D, Bircher S, Lawrence H, Quesney A, Jacquette E (2012). CATDS level 3 data product description. CESBIO-SA Technical Report
[4]
Chen L, Shi J C, Wigneron J P, Chen K S (2010). A parameterized surface emission model at L-band for soil moisture retrieval. IEEE Geosci Remote Sens Lett, 7(1): 127–130
CrossRef Google scholar
[5]
Chen Y Y, Yang K, Qin J, Zhao L, Tang W J, Han M L (2013). Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan plateau. J Geophys Res, D, Atmospheres, 118, doi: 10.1002/jgrd.50301
[6]
De Jeu R A M, Owe M (2003). Further validation of a new methodology for surface moisture and vegetation optical depth retrieval. Int J Remote Sens, 24(22): 4559–4578
CrossRef Google scholar
[7]
Dente L, Su Z B, Wen J (2012a). Validation of SMOS soil moisture products over the Maqu and Twente regions. Sensors (Basel), 12(8): 9965–9986
CrossRef Pubmed Google scholar
[8]
Dente L, Vekerdy Z, Wen J, Su Z B (2012b). Maqu network for validation of satellite-derived soil moisture products. Int J Appl Earth Obs Geoinf, 17: 55–65
CrossRef Google scholar
[9]
Draper C S, Walker J P, Steinle P J, De Jeu R A M, Holmes T R H (2009). An evaluation of AMSR-E derived soil moisture over Australia. Remote Sens Environ, 113(4): 703–710
CrossRef Google scholar
[10]
Du J Y (2012). A method to improve satellite soil moisture retrievals based on Fourier analysis. Geophys Res Lett, 39(15): L15404, doi: 10.1029/2012GL052435
[11]
Entekhabi D, Njoku E, O’Neill P E, Kellogg K H, Crow W T, Edelstein W N, Entin J K, Goodman S D, Jackson T J, Johnson J, Kimball J, Piepmeier J R, Koster R D, Martin N, McDonald K C, Moghaddam M, Moran S, Reichle R, Shi J C, Spencer M W, Thrman S W, Tsang L, van Zyl J (2010). The soil moisture active passive (SMAP) mission. Proc IEEE, 98(5): 704–716
CrossRef Google scholar
[12]
Guo P, Shi J C, Liu Q, Du J Y (2013). A new algorithm for soil moisture retrieval with L-band radiometer. IEEE J Sel Top Appl Farth Observ Remote Sens, 6(3): 1147–1155
CrossRef Google scholar
[13]
Hallikainen M T, Ulaby F T, Dobson M C, El-Rayes M A, Wu L K (1985). Microwave dielectric behavior of wet soil-part 1: empirical models and experimental observations. IEEE Trans Geosci Rem Sens, GE-23(1): 25–34
CrossRef Google scholar
[14]
Holmes T R H, De Jeu R A M, Owe M, Dolman A J (2009). Land surface temperature from Ka band (37 GHz) passive microwave observations. J Geophys Res, 114(D4): D04113
CrossRef Google scholar
[15]
Hong S (2010). Global retrieval of small-scale roughness over land surfaces at microwave frequency. J Hydrol (Amst), 389(1–2): 121–126
CrossRef Google scholar
[16]
Jackson T J (1993). Measuring surface soil moisture using passive microwave remote sensing. Hydrol Processes, 7(2): 139–152
CrossRef Google scholar
[17]
Jackson T J, Cosh M H, Bindlish R, Starks P J, Bosch D D, Seyfried M, Goodrich D C, Moran M S, Du J Y (2010). Validation of Advanced Microwave Scanning Radiometer soil moisture products. IEEE Trans Geosci Rem Sens, 48(12): 4256–4272
CrossRef Google scholar
[18]
Jackson T J, Hawley M E, O’Neill P E (1987). Preplanting soil moisture using passive microwave sensors. J Am Water Resour Assoc, 23(1): 11–19
CrossRef Google scholar
[19]
Jackson T J, Le Vine D M, Hsu A Y, Oldak A, Starks P J, Swift C T, Isham J, Haken M (1999). Soil moisture mapping at regional scales using microwave radiometry: the southern Great Plains hydrology experiment. IEEE Trans Geosci Rem Sens, 37(5): 2136–2151
CrossRef Google scholar
[20]
Jacquette E, Al Bita A, Mialon A, Kerr Y, Quesney A, Cabot F, Richaume P (2010). SMOS CATDS level 3 global products over land. Proc SPIE, 7824: 78240K, 78240K-6
CrossRef Google scholar
[21]
Jin R, Li X, Che T (2009). A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature. Remote Sens Environ, 113(12): 2651–2660
CrossRef Google scholar
[22]
Kerr Y H, Waldteufel P, Wigneron J P, Martinuzzi J, Font J, Berger M (2001). Soil moisture retrieval from space: the soil moisture and ocean salinity (SMOS) mission. IEEE Trans Geosci Rem Sens, 39(8): 1729–1735
CrossRef Google scholar
[23]
Koike T, Nakamura Y, Kaihotsu I, Davaa G, Matsuura N, Tamagawa K, Fujii H (2004). Development of an advanced microwave scanning radiometer (AMSR-E) algorithm of soil moisture and vegetation water content. Annu J Hydraul Eng, JSCE, 48: 217–222
CrossRef Google scholar
[24]
Lacava T, Coviello I, Faruolo M, Mazzeo G, Pergola N, Tramutoli V (2013). A multitemporal investigation of AMSR-E C-band radio-frequency interference. IEEE Trans Geosci Rem Sens, 51(4): 2007–2015
CrossRef Google scholar
[25]
Lu H, Shi J C (2012). Reconstruction and analysis of temporal and spatial variations in surface soil moisture in China using remote sensing. Chin Sci Bull, 57(22): 2824–2834
CrossRef Google scholar
[26]
Mao K B, Tang H J, Zhang L X, Li M C, Guo Y, Zhao D Z (2008). A method for retrieving soil moisture in Tibet region by utilizing microwave index from TRMM/TMI data. Int J Remote Sens, 29(10): 2903–2923
CrossRef Google scholar
[27]
Meesters A G, De Jeu R A M, Owe M (2005). Analytical derivation of the vegetation optical depth from the microwave polarization difference index. IEEE Geosci Remote Sens Lett, 2(2): 121–123
CrossRef Google scholar
[28]
Mladenova I, Lakshmi V, Jackson T J, Walker J P, Merlin O, De Jeu R A M (2011). Validation of AMSR-E soil moisture using L-band airborne radiometer data from National Airborne Field Experiment 2006. Remote Sens Environ, 115(8): 2096–2103
CrossRef Google scholar
[29]
Mo T, Choudhury B J, Schmugge T J, Wang J R, Jackson T J (1982). A model for microwave emission from vegetation-covered fields. J Geophys Res, 87(C13): 11229–11237
CrossRef Google scholar
[30]
Njoku E G, Ashcroft P, Chan T K, Li L (2005). Global survey and statistics of radio-frequency interference in AMSR-E land observations. IEEE Trans Geosci Rem Sens, 43(5): 938–947
CrossRef Google scholar
[31]
Njoku E G, Chan S K (2006). Vegetation and surface roughness effects on AMSR-E land observations. Remote Sens Environ, 100(2): 190–199
CrossRef Google scholar
[32]
Njoku E G, Entekhabi D (1996). Passive microwave remote sensing of soil moisture. J Hydrol (Amst), 184(1–2): 101–129
CrossRef Google scholar
[33]
Njoku E G, Jackson T J, Lakshmi V, Chan T K, Nghiem S V (2003). Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Rem Sens, 41(2): 215–229
CrossRef Google scholar
[34]
Owe M, De Jeu R A M, Holmes T R H (2008). Multisensor historical climatology of satellite-derived global land surface moisture. J Geophys Res, 113(F1): F01002
CrossRef Google scholar
[35]
Paloscia S, Macelloni G, Santi E (2006). Soil moisture estimates from AMSR-E brightness temperatures by using a dual-frequency algorithm. IEEE Trans Geosci Rem Sens, 44(11): 3135–3144
CrossRef Google scholar
[36]
Paloscia S, Pampaloni P (1988). Microwave polarization index for monitoring vegetation growth. IEEE Trans Geosci Rem Sens, 26(5): 617–621
CrossRef Google scholar
[37]
Reynolds C A, Jackson T J, Rawls W J (2000). Estimating soil water-holding capacities by linking the food and agriculture organization soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resour Res, 36(12): 3653–3662
CrossRef Google scholar
[38]
Roy A, Royer A, Wigneron J P, Langlois A, Bergeron J, Cliche P (2012). A simple parameterization for a boreal forest radiative transfer model at microwave frequencies. Remote Sens Environ, 124: 371–383
CrossRef Google scholar
[39]
Rüdiger C, Calvet J C, Gruhier C, Holmes T R H, De Jeu R A M, Wagner W (2009). An intercomparison of ERS-Scat and AMSR-E soil moisture observations with model simulations over France. J Hydrometeorol, 10(2): 431–447
CrossRef Google scholar
[40]
Saha S K (1995). Assessment of regional soil moisture conditions by coupling satellite sensor data with a soil-plant system heat and moisture balance model. Int J Remote Sens, 16(5): 973–980
CrossRef Google scholar
[41]
Saleh K, Wigneron J P, de Rosnay P, Calvet J C, Kerr Y (2006). Semi-empirical regressions at L-band applied to surface soil moisture retrievals over grass. Remote Sens Environ, 101(3): 415–426
CrossRef Google scholar
[42]
Santi E, Pettinato S, Paloscia S, Pampaloni P, Macelloni G, Brogioni M (2012). An algorithm for generating soil moisture and snow depth maps from microwave spaceborne radiometers: HydroAlgo. Hydrol Earth Syst Sci, 16(10): 3659–3676
CrossRef Google scholar
[43]
Shi J C, Jackson T, Tao J, Du J, Bindlish R, Lu L, Chen K S (2008). Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E. Remote Sens Environ, 112(12): 4285–4300
CrossRef Google scholar
[44]
Shi J C, Jiang L M, Zhang L X, Chen K S, Wigneron J P, Chanzy A, Jackson T J (2006). Physically based estimation of bare-surface soil moisture with the passive radiometers. IEEE Trans Geosci Rem Sens, 44(11): 3145–3153
CrossRef Google scholar
[45]
Skou N, Misra S, Balling J E, Kristensen S S, Sobjaerg S S (2010). L-band RFI as experienced during airborne campaigns in preparation for SMOS. IEEE Trans Geosci Rem Sens, 48(3): 1398–1407
CrossRef Google scholar
[46]
Su Z, Wen J, Dente L, van der Velde R, Wang L, Ma Y, Yang K, Hu Z (2011). The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol Earth Syst Sci, 15(7): 2303–2316
CrossRef Google scholar
[47]
Van de Griend A A, Owe M (1994). Microwave vegetation optical depth and inverse modelling of soil emissivity using Nimbus/SMMR satellite observations. Meteorol Atmos Phys, 54(1–4): 225–239
CrossRef Google scholar
[48]
Wagner W, Naeimi V, Scipal K, de Jeu R A M, Martínez-Fernández J (2007). Soil moisture from operational meteorological satellites. Hydrogeol J, 15(1): 121–131
CrossRef Google scholar
[49]
Wang J R, Choudhury B J (1981). Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency. J Geophys Res, 86(C6): 5277–5282
CrossRef Google scholar
[50]
Wang L L, Qu J J (2009). Satellite remote sensing applications for surface soil moisture monitoring: a review. Front Earth Sci China, 3(2): 237–247
CrossRef Google scholar
[51]
Wen J, Su Z B, Ma Y M (2003). Determination of land surface temperature and soil moisture from tropical rainfall measuring mission/microwave imager remote sensing data. J Geophys Res, 108(D2): 4038
CrossRef Google scholar
[52]
Wigneron J P, Calvet J C, Pellarin T, Van de Griend A A, Berger M, Ferrazzoli P (2003). Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans. Remote Sens Environ, 85(4): 489–506
CrossRef Google scholar
[53]
Wigneron J P, Laguerre L, Kerr Y H (2001). A simple parameterization of the L-Band microwave emission from rough agricultural soils. IEEE Trans Geosci Rem Sens, 39(8): 1697–1707
CrossRef Google scholar
[54]
Xie H, Ye J S, Liu X M, E C Y (2010). Warming and drying trends on the Tibetan Plateau (1971–2005). Theor Appl Climatol, 101(3–4): 241–253
CrossRef Google scholar
[55]
Zhang X F, Zhao J P, Sun Q, Wang X Y, Guo Y L, Li J (2011). Soil moisture retrieval from AMSR-E data in Xinjiang (China): models and validation. IEEE J Sel Top Appl Earth Observ Remote Sens, 4(1): 117–127
CrossRef Google scholar
[56]
Zhao T J, Zhang L X, Jiang L M, Zhao S J, Chai L N, Jin R (2011a). A new soil freeze/thaw discriminant algorithm using AMSR-E passive microwave imagery. Hydrol Processes, 25(11): 1704–1716
CrossRef Google scholar
[57]
Zhao T J, Zhang L X, Shi J C, Jiang L M (2011b). A physically based statistical methodology for surface soil moisture retrieval in the Tibet Plateau using microwave vegetation indices. J Geophys Res, 116(D8): D08116
CrossRef Google scholar

Acknowledgments

We are grateful to Dr. Alok Sahoo from Princeton University for his valuable assistance, and professor Yang Kun from the Institute of Tibetan Plateau Research, Chinese Academy of Sciences, for kindly providing the precipitation data. We also thank NSIDC, CATDS (Centre Aval de Traitement des Données SMOS), and the International Soil Moisture Network for providing the AMSR-E products, SMOS products, and in-situ soil moisture data, respectively. This work was supported by the Chinese Ministry of Science and Technology (No. 2011AA120403), the Director Foundation for Postgraduates of Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences (No. Y3ZZ17101B), and partially supported by the National Natural Science Foundation of China (Grant No. 41101391) and the Key Laboratory of Mapping from Space, National Administration of Surveying, Mapping and Geoinformation (No. K201301).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1613 KB)

Accesses

Citations

Detail

Sections
Recommended

/