Isolation and characterization of diesel degrading bacteria, Sphingomonas sp. and Acinetobacter junii from petroleum contaminated soil

Qiuzhuo ZHANG , Duanchao WANG , Mengmeng LI , Wei-Ning XIANG , Varenyam ACHAL

Front. Earth Sci. ›› 2014, Vol. 8 ›› Issue (1) : 58 -63.

PDF (127KB)
Front. Earth Sci. ›› 2014, Vol. 8 ›› Issue (1) : 58 -63. DOI: 10.1007/s11707-013-0415-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Isolation and characterization of diesel degrading bacteria, Sphingomonas sp. and Acinetobacter junii from petroleum contaminated soil

Author information +
History +
PDF (127KB)

Abstract

Two indigenous bacteria of petroleum contaminated soil were characterized to utilize diesel fuel as the sole carbon and energy sources in this work. 16S rRNA gene sequence analysis identified these bacteria as Sphingomonas sp. and Acinetobacter junii. The ability to degrade diesel fuel has been demonstrated for the first time by these isolates. The results of IR analyses showed that Sphingomonas sp. VA1 and A. junii VA2 degraded up to 82.6% and 75.8% of applied diesel over 15 days, respectively. In addition, Sphingomonas sp. VA1 possessed the higher cellular hydrophobicities of 94% for diesel compared to 81% by A. junii VA2. The isolates Sphingomonas sp. VA1 and A. junii VA2 exhibited 24% and 18%, respectively emulsification activity. This study reports two new diesel degrading bacterial species, which can be effectively used for bioremediation of petroleum contaminated sites.

Keywords

diesel degrading bacteria / 16S rRNA / cell surface hydrophobicity / emulsification / bioremediation

Cite this article

Download citation ▾
Qiuzhuo ZHANG, Duanchao WANG, Mengmeng LI, Wei-Ning XIANG, Varenyam ACHAL. Isolation and characterization of diesel degrading bacteria, Sphingomonas sp. and Acinetobacter junii from petroleum contaminated soil. Front. Earth Sci., 2014, 8(1): 58-63 DOI:10.1007/s11707-013-0415-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Achal V, Pan X (2011). Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr Microbiol, 62(3): 894-902

[2]

Aislabie J, Saul D J, Foght J M (2006). Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles, 10(3): 171-179

[3]

Altschul S F, Madden T L, Schäffer A A, Zhang J, Zhang Z, Miller W, Lipman D J (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25(17): 3389-3402

[4]

Ausma S, Edwards G C, Fitzgerald-Hubble C R, Halfpenny-Mitchell L, Gillespie T J, Mortimer W P (2002). Volatile hydrocarbon emissions from a diesel fuel-contaminated soil bioremediation facility. J Air Waste Manag Assoc, 52(7): 769-780

[5]

Barriga J A T, Cooper D G, Idziak E S, Cameron D R (1999). Components of the bioemulsifier from S. cerevisiae. Enzyme Microb Technol, 25(1-2): 96-102

[6]

Cooper D G, Goldenberg B G (1987). Surface active agents from Bacillus sp. Appl Environ Microbiol, 55: 224-229

[7]

Dillard L A, Essaid H I, Herkelrath W N (1997). Multiphase flow modeling of a crude-oil spill site with a bimodal permeability distribution. Water Resour Res, 33(7): 1617-1632

[8]

EPA (1997). Standard methods for evaluating solid waste: physical/chemical methods. Environmental Protection Agency Publication, EPA: 530/SW-846

[9]

Ganesh A, Lin J (2009). Diesel degradation and biosurfactant production by Gram-positive isolates. Afr J Biotechnol, 8(21): 5847-5854

[10]

Hong J, Kim J, Choi O, Cho K S, Ryu H (2005). Characterization of a diesel-degrading bacterium, Pseudomonas aeruginosa IU5, isolated from oil-contaminated soil in Korea. World J Microbiol Biotechnol, 21(3): 381-384

[11]

Leahy J G, Colwell R R (1990). Microbial degradation of hydrocarbons in the environment. Microbiol Rev, 54(3): 305-315

[12]

Lidderdale T (1993). Demand, supply, and price outlook for low-sulfur diesel fuel. Energy Information Administration/Short term energy outlook annual supplement, DOE/EIA-0202 (93)

[13]

Lin T C, Young C C, Ho M J, Yeh M S, Chou C L, Wei Y H, Chang J S (2005). Characterization of floating activity of indigenous diesel-assimilating bacterial isolates. J Biosci Bioeng, 99(5): 466-472

[14]

MacLeod C T, Daugulis A J (2005). Interfacial effects in a two-phase partitioning bioreactor: degradation of polycyclic aromatic hydrocarbon (PAHs) by a hydrophobic Mycobacterium. Process Biochem, 40(5): 1799-1805

[15]

Marcoux J, Déziel E, Villemur R, Lépine F, Bisaillon J G, Beaudet R (2000). Optimization of high-molecular-weight polycyclic aromatic hydrocarbons’ degradation in a two-liquid-phase bioreactor. J Appl Microbiol, 88(4): 655-662

[16]

Menezes Bento F, de Oliveira Camargo F A, Okeke B C, Frankenberger W T Jr (2005). Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol Res, 160(3): 249-255

[17]

Milcic-Terzic J, Lopez-Vidal Y, Vrvic M M, Saval S (2001). Detection of catabolic genes in indigenous microbial consortia isolated from a diesel-contaminated soil. Bioresour Technol, 78(1): 47-54

[18]

Nandy P, Thakur A R, Chaudhuri S R (2007). Characterization of bacterial strains isolated through microbial profiling of urine samples. OnLine J Biol Sci, 7(1): 44-51

[19]

Navon-Venezia S, Zosim Z, Gottlieb A, Legmann R, Carmeli S, Ron E Z, Rosenberg E (1995). Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol, 61(9): 3240-3244

[20]

Rosenberg M, Gutnick D, Rosenberg E (1980). Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett, 9(1): 29-33

[21]

Stelmack P L, Gray M R, Pickard M A (1999). Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol, 65(1): 163-168

[22]

Tamura K, Dudley J, Nei M, Kumar S (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 24(8): 1596-1599

[23]

Yousaf S, Andria V, Reichenauer T G, Smalla K, Sessitsch A (2010). Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J Hazard Mater, 184(1-3): 523-532

[24]

Kebria D Y, Khodadadi A, Ganjidoust H, Badkoubi A, Amoozegar M A (2009). Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. Int J Environ Sci Technol, 6(3): 435-442

[25]

Zhang Z, Gai L, Hou Z, Yang C, Ma C, Wang Z, Sun B, He X, Tang H, Xu P (2010). Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils. Bioresour Technol, 101(21): 8452-8456

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (127KB)

1322

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/