
Carbonate formation and water level changes in a paleo-lake and its implication for carbon cycle and climate change, arid China
Yu LI, Nai’ang WANG, Zhuolun LI, Xuehua ZHOU, Chengqi ZHANG, Yue WANG
Front. Earth Sci. ›› 2013, Vol. 7 ›› Issue (4) : 487-500.
Carbonate formation and water level changes in a paleo-lake and its implication for carbon cycle and climate change, arid China
Carbonate deposition is a main inorganic carbon sink in lakes, which varies depending on climate change and internal lake dynamics. Research on the relationship between lake carbonate and climate will help to understand mechanisms of carbon cycle in lacustrine systems. The approach of this study is to explicitly link carbonate formation with Holocene long-term climate change and lake evolution in a paleo-lake (Zhuye Lake), which is a terminal lake of a typical inland drainage basin in arid China. This paper presents analysis on grain-size, carbonate content and mineralogical composition of sediment samples from different locations of Zhuye Lake. The results show that calcite and aragonite are two main components for the lake carbonate, and the carbonate enrichment is associated with lake expansion during the Late Glacial and early to middle Holocene. Holocene lake expansion in arid regions of China is usually connected with high basin-wide precipitation that can strengthen the basin-wide surface carbonate accumulation in the terminal lake. For this reason, Zhuye Lake plays a role of carbon sinks during the wet periods of the Holocene.
carbonate / carbon cycle / lake sediments / mineralogical composition / climate change
[1] |
Berger A, Loutre M F (1991). Insolation values for the climate of the last 10 million years. Quat Sci Rev, 10(4): 297-317
CrossRef
Google scholar
|
[2] |
Brown T A, Nelson D E, Mathewes R W, Vogel J S, Southon J R (1989). Radiocarbon dating of pollen by accelerator mass spectrometry. Quat Res, 32(2): 205-212
CrossRef
Google scholar
|
[3] |
Cai Y, Tan L, Cheng H, An Z, Edwards R L, Kelly M J, Kong X, Wang X (2010). The variation of summer monsoon precipitation in central China since the last deglaciation. Earth Planet Sci Lett, 291(1-4): 21-31
CrossRef
Google scholar
|
[4] |
Chen F H, Cheng B, Zhao Y, Zhu Y, Madsen D B (2006). Holocene environmental change inferred from a high-resolution pollen record, Lake Zhuyeze, arid China. Holocene, 16(5): 675-684
CrossRef
Google scholar
|
[5] |
Chen F H, Wu W, Holmes J, Madsen D B, Zhu Y, Jin M, Oviatt J G (2003). A mid-Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia, China. Chin Sci Bull, 48(14): 1401-1410
CrossRef
Google scholar
|
[6] |
Chen F H, Yu Z C, Yang M L, Ito E, Wang S M, Madsen D B, Huang X Z, Zhao Y, Sato T, Birks H J B, Boomer I, Chen J H, An C B, Wünnemann B (2008). Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 27: 351-364
CrossRef
Google scholar
|
[7] |
Chen F H, Zhu Y, Li J, Shi Q, Jin L, Wünemann B (2001). Abrupt Holocene changes of the Asian monsoon at millennial-and centennial-scales: evidence from lake sediment document in Minqin Basin, NW China. Chin Sci Bull, 46(23): 1942-1947
CrossRef
Google scholar
|
[8] |
Chen J A, Wan G J, Zhang D, Zhang F, Huang R (2004). Environmental records of different time scales in lake-sediments: grain-size of sediments. Sci China Ser D, 47: 954-960
CrossRef
Google scholar
|
[9] |
Chen L H, Qu Y G (1992). Water-land Resources and Reasonable Development and Utilization in the Hexi Region. Beijing: Science Press (in Chinese)
|
[10] |
China Meteorological Administration (1994). Atlas of the Climatic Resources of China. Beijing: China Atlas Press (in Chinese)
|
[11] |
Dean W E (1999). The carbon cycle and biogeochemical dynamics in lake sediments. J Paleolimnol, 21(4): 375-393
CrossRef
Google scholar
|
[12] |
Ding H, Zhang J (2005). Goechemical properties and evolution of groundwater beneath the Hexi Corridor, Gansu Province. Arid Zone Research, 22: 24-28 (in Chinese)
|
[13] |
Dykoski C A, Edwards R L, Cheng H, Yuan D, Cai Y, Zhang M, Lin Y, Qing J, An Z, Revenaugh J (2005). A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett, 233(1-2): 71-86
CrossRef
Google scholar
|
[14] |
Fowell S J, Hansen B C S, Peck J A, Khosbayar P, Ganbold E (2003). Mid to late-Holocene climate evolution of the Lake Telmen basin, North Central Mongolia, based on palynological data. Quat Res, 59(3): 353-363
CrossRef
Google scholar
|
[15] |
Gasse F, Arnold M, Fontes J C, Fort M, Gibert E, Huc A, Li B, Li Y, Liu Q, Melieres F, van Campo E, Wang F, Zhan Q (1991). A 13,000 year climate record from western Tibet. Nature, 353(6346): 742-745
CrossRef
Google scholar
|
[16] |
Gierlowski-Kordesch E, Kelts K (1994). Global Geological Record of Lake Basins. Cambridge: Cambridge University Press
|
[17] |
Gorham E, Dean W E, Sanger J E (1983). The chemical composition of lakes in the north-central United States. Limnol Oceanogr, 28(2): 287-301
CrossRef
Google scholar
|
[18] |
Hammer U T (1986). Saline Lake Ecosystems of the World. Boston: Junk Publishers
|
[19] |
Jiang W Y, Liu T S (2007). Timing and spatial distribution of mid-Holocene drying over northern China: Response to a southeastward retreat of the East Asian Monsoon. J Geophys Res, D, Atmospheres, 112(D24): 1-8
CrossRef
Google scholar
|
[20] |
Lenton T M (2000). Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model. Tellus, 52(5): 1159-1188
CrossRef
Google scholar
|
[21] |
Lerman A (1978). Lake: Chemistry, Geology, Physics. Berlin: Springer-Verlag
|
[22] |
Li E (2011). Comparative study of the sediment characteristics in the Badain Jaran and Tengger Deserts. Xi’an: Doctoral Thesis of Shanxi Normal University (in Chinese)
|
[23] |
Li X, Cheng G, Jin H, Kang E, Che T, Jin R, Wu L, Nan Z, Wang J, Shen Y (2008). Cryospheric change in China. Global Planet Change, 62(3-4): 210-218
CrossRef
Google scholar
|
[24] |
Li Y, Wang N, Cheng H, Zhao Q, Long H (2009). Holocene environmental change in the marginal area of the Asian monsoon: a record from Zhuye Lake, NW China. Boreas, 38(2): 349-361
CrossRef
Google scholar
|
[25] |
Liu C L, Wang M L, Jiao P C, Li S D, Chen Z (2006). Features and formation mechanism of faults and potash-forming effect in the Lop Nur salt lake, Xinjiang, China. Acta Geol Sin, 80: 936-943
|
[26] |
Liu X Q, Dong H L, Rech J A, Matsumoto R, Yang B, Wang Y B (2008a). Evolution of Chaka Salt Lake in NW China in response to climatic change during the latest Pleistocene-Holocene. Quat Sci Rev, 27(7-8): 867-879
CrossRef
Google scholar
|
[27] |
Liu X Q, Herzschuh U, Shen J, Jiang Q, Xiao X (2008b). Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China. Quat Res, 70(3): 412-425
CrossRef
Google scholar
|
[28] |
Liu X Q, Shen J, Wang S M, Wang Y B, Liu W G (2007). Southwest monsoon changes indicated by oxygen isotope of ostracode shells from sediments in Qinghai Lake since the late Glacial. Chin Sci Bull, 52(4): 539-544
CrossRef
Google scholar
|
[29] |
Liu Z (2000). Research on material composition of Salt Lakes in Tengger Desert region. Journal of Salt Lake Research, 8: 21-26 (in Chinese)
|
[30] |
Matter M, Anselmetti F S, Jordanoska B, Wagner B, Wessels M, Wuest A (2010). Carbonate sedimentation and effects of eutrophication observed at the Kalista subaquatic springs in Lake Ohrid (Macedonia). Biogeosciences, 7(11): 3755-3767
CrossRef
Google scholar
|
[31] |
McConnaughey T E D A, Labaugh J W, Rosenberry D O, Striegl R G, Reddy M M, Schuster P F, Carter V (1994). Carbon budget for a groundwater-fed lake: calcification supports summer photosynthesis. Limnol Oceanogr, 39(6): 1319-1332
CrossRef
Google scholar
|
[32] |
Meyers P A, Ishiwatari R (1993). Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem, 20(7): 867-900
CrossRef
Google scholar
|
[33] |
Mischke S, Aichner B, Diekmann B, Herzschuh U, Plessen B, Wünnemann B, Zhang C (2010). Ostracods and stable isotopes of a late glacial and Holocene lake record from the NE Tibetan Plateau. Chem Geol, 276(1-2): 95-103
CrossRef
Google scholar
|
[34] |
Moore P D, Webb J A, Collinson M E (1991). Pollen Analysis. Oxford: Blackwell
|
[35] |
Morinaga H, Itota C, Isezaki N, Goto H, Yaskawa K, Kusakabe M, Liu J, Gu Z, Yuan B, Cong S (1993). Oxygen-18 and carbon-13 records for the last 14 000 years from lacustrine carbonates of Siling-Co (lake) in the Qinghai-Tibetan Plateau. Geophys Res Lett, 20(24): 2909-2912
CrossRef
Google scholar
|
[36] |
Morrill C, Overpeck J T, Cole J E, Liu K, Shen C, Tang L (2006). Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet. Quat Res, 65(2): 232-243
CrossRef
Google scholar
|
[37] |
Pachur H J, Wünnemann B, Zhang H (1995). Lake Evolution in the Tengger Desert, Northwestern China, during the last 40,000 Years. Quat Res, 44(2): 171-180
CrossRef
Google scholar
|
[38] |
Peng Y J, Xiao J L, Nakamura T, Liu B L, Inouchi Y (2005). Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of Daihai Lake in Inner Mongolia of north-central China. Earth Planet Sci Lett, 233(3-4): 467-479
CrossRef
Google scholar
|
[39] |
Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467(7311): 43-51
CrossRef
Pubmed
Google scholar
|
[40] |
Schmalz R F (1966). Environments of marine evaporite deposition. Miner Ind, 35: 1-7
|
[41] |
Schnurrenberger D, Russell J, Kelts K (2003). Classification of lacustrine sediments based on sedimentary components. J Paleolimnol, 29(2): 141-154
CrossRef
Google scholar
|
[42] |
Shen J, Liu X, Wang S, Matsumoto R (2005). Palaeoclimatic changes in the Qinghai Lake area during the last 18000 years. Quat Int, 136(1): 131-140
CrossRef
Google scholar
|
[43] |
Shi Y, Shen Y, Kang E, Li D, Ding Y, Zhang G, Hu R (2007). Recent and future climate change in northwest China. Clim Change, 80(3-4): 379-393
CrossRef
Google scholar
|
[44] |
Sun D (1990). “Tear Drop Pattern” potash deposits in lacustrine facies. Chin J Oceanology Limnol, 8(1): 50-65
CrossRef
Google scholar
|
[45] |
Sun D, Bloemendal J, Rea D K, Vandenberghe J, Jiang F, An Z, Su R (2002). Grain size distribution function of polymodal sediments in hydraulic and Aeolian environments and numerical partitioning of the sedimentary components. Sediment Geol, 152(3-4): 263-277
CrossRef
Google scholar
|
[46] |
Wang H (1987). The water resources of lakes in China. Chin J Oceanology Limnol, 5(3): 263-280
CrossRef
Google scholar
|
[47] |
Wang K, Jiang H, Zhao H (2005a). Atmospheric water vapor transport from westerly and monsoon over the Northwest China. Advances in Water Science, 16: 432-438 (in Chinese)
|
[48] |
Wang Y, Cheng H, Edwards R L, He Y, Kong X, An Z, Wu J, Kelly M J, Dykoski C A, Li X (2005b). The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science, 308(5723): 854-857
CrossRef
Pubmed
Google scholar
|
[49] |
Wen R L, Xiao J L, Chang Z G, Zhai D Y, Xu Q H, Li Y C, Itoh S (2010). Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China. Boreas, 39(2): 262-272
CrossRef
Google scholar
|
[50] |
Williams W D (1991). Chinese and Mongolian saline lakes: a limnological overview. Hydrobiologia, 210(1-2): 39-66
CrossRef
Google scholar
|
[51] |
Wünnemann B, Mischke S, Chen F H (2006). A Holocene sedimentary record from Bosten Lake, China. Palaeogeogr Palaeoclimatol Palaeoecol, 234(2-4): 223-238
CrossRef
Google scholar
|
[52] |
Wünnemann B, Pachur H J, Zhang H C (1998). Climatic and environmental changes in the deserts of Inner Mongolia, China, since the Late Pleistocene. In: Alsharhan A S, Glennie K W, Whittle G L, Kendall C G St C, eds. Quaternary Deserts and Climatic Changes. Balkema, Rotterdaman, 381-394
|
[53] |
Xiao J L, Si B, Zhai D Y, Itoh S, Lomtatidze Z (2008). Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability. J Paleolimnol, 40(1): 519-528
CrossRef
Google scholar
|
[54] |
Xiao J L, Xu Q H, Nakamura T, Yang X L, Liang W D, Inouchi Y (2004). Holocene vegetation variation in the Daihai Lake region of north-central China: a direct indication of the Asian monsoon climatic history. Quat Sci Rev, 23(14-15): 1669-1679
CrossRef
Google scholar
|
[55] |
Zhang H C, Ma Y Z, Li J J, Qi Y, Chen G J, Fang H B, Wünnemann B, Pachur H J (2001). Palaeolake evolution and abrupt climate changes during last glacial period in NW China. Geophys Res Lett, 28(16): 3203-3206
CrossRef
Google scholar
|
[56] |
Zhang H C, Peng J L, Ma Y, Chen G J, Feng Z D, Li B, Fan H F, Chang F Q, Lei G L, Wünnemann B (2004). Late quaternary palaeolake-levels in Tengger Desert, NW China. Palaeogeogr Palaeoclimatol Palaeoecol, 211(1-2): 45-58
CrossRef
Google scholar
|
[57] |
Zhang H C, Wünnemann B, Ma Y Z, Peng J L, Pachur H J, Li L J, Qi Y, Chen G J, Fang H B, Feng Z D (2002). Lake level and climate changes between 42,000 and 18,000 C-14 yr BP in the Tengger Desert, Northwestern China. Quat Res, 58(1): 62-72
CrossRef
Google scholar
|
[58] |
Zhao Q (2005). Environment changes of the Shiyang River drainage since the last deglaciation. Lanzhou: Doctoral Thesis of Lanzhou University (in Chinese)
|
[59] |
Zhao S Q (1983). A new scheme for comprehensive physical regionalization in China. Acta Geogr Sin, 38: 1-10 (in Chinese)
|
[60] |
Zhao Y, Yu Z, Chen F H, Li J (2008). Holocene vegetation and climate change from a lake sediment record in the Tengger Sandy Desert, northwest China. J Arid Environ, 72(11): 2054-2064
CrossRef
Google scholar
|
[61] |
Zheng M, Tang J, Liu J, Zhang F (1993). Chinese saline lakes. Hydrobiogia, 267(1-3): 23-36
CrossRef
Google scholar
|
[62] |
Zheng M, Zhao Y, Liu J (2000). Palaeoclimatic indicators of China’s Quaternary saline lake sediments and hydrochemistry. Acta Geol Sin, 74: 259-265
|
[63] |
Zhou W, Donahua D J, Jull A J T (1999). Radiocarbon AMS dating of pollen concentrated from eolian sediments: implications for monsoon climate change since the late Quaternary. Radiocarbon, 39: 19-26
|
/
〈 |
|
〉 |