Carbonate formation and water level changes in a paleo-lake and its implication for carbon cycle and climate change, arid China

Yu LI , Nai’ang WANG , Zhuolun LI , Xuehua ZHOU , Chengqi ZHANG , Yue WANG

Front. Earth Sci. ›› 2013, Vol. 7 ›› Issue (4) : 487 -500.

PDF (663KB)
Front. Earth Sci. ›› 2013, Vol. 7 ›› Issue (4) : 487 -500. DOI: 10.1007/s11707-013-0392-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Carbonate formation and water level changes in a paleo-lake and its implication for carbon cycle and climate change, arid China

Author information +
History +
PDF (663KB)

Abstract

Carbonate deposition is a main inorganic carbon sink in lakes, which varies depending on climate change and internal lake dynamics. Research on the relationship between lake carbonate and climate will help to understand mechanisms of carbon cycle in lacustrine systems. The approach of this study is to explicitly link carbonate formation with Holocene long-term climate change and lake evolution in a paleo-lake (Zhuye Lake), which is a terminal lake of a typical inland drainage basin in arid China. This paper presents analysis on grain-size, carbonate content and mineralogical composition of sediment samples from different locations of Zhuye Lake. The results show that calcite and aragonite are two main components for the lake carbonate, and the carbonate enrichment is associated with lake expansion during the Late Glacial and early to middle Holocene. Holocene lake expansion in arid regions of China is usually connected with high basin-wide precipitation that can strengthen the basin-wide surface carbonate accumulation in the terminal lake. For this reason, Zhuye Lake plays a role of carbon sinks during the wet periods of the Holocene.

Keywords

carbonate / carbon cycle / lake sediments / mineralogical composition / climate change

Cite this article

Download citation ▾
Yu LI, Nai’ang WANG, Zhuolun LI, Xuehua ZHOU, Chengqi ZHANG, Yue WANG. Carbonate formation and water level changes in a paleo-lake and its implication for carbon cycle and climate change, arid China. Front. Earth Sci., 2013, 7(4): 487-500 DOI:10.1007/s11707-013-0392-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berger A, Loutre M F (1991). Insolation values for the climate of the last 10 million years. Quat Sci Rev, 10(4): 297-317

[2]

Brown T A, Nelson D E, Mathewes R W, Vogel J S, Southon J R (1989). Radiocarbon dating of pollen by accelerator mass spectrometry. Quat Res, 32(2): 205-212

[3]

Cai Y, Tan L, Cheng H, An Z, Edwards R L, Kelly M J, Kong X, Wang X (2010). The variation of summer monsoon precipitation in central China since the last deglaciation. Earth Planet Sci Lett, 291(1-4): 21-31

[4]

Chen F H, Cheng B, Zhao Y, Zhu Y, Madsen D B (2006). Holocene environmental change inferred from a high-resolution pollen record, Lake Zhuyeze, arid China. Holocene, 16(5): 675-684

[5]

Chen F H, Wu W, Holmes J, Madsen D B, Zhu Y, Jin M, Oviatt J G (2003). A mid-Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia, China. Chin Sci Bull, 48(14): 1401-1410

[6]

Chen F H, Yu Z C, Yang M L, Ito E, Wang S M, Madsen D B, Huang X Z, Zhao Y, Sato T, Birks H J B, Boomer I, Chen J H, An C B, Wünnemann B (2008). Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 27: 351-364

[7]

Chen F H, Zhu Y, Li J, Shi Q, Jin L, Wünemann B (2001). Abrupt Holocene changes of the Asian monsoon at millennial-and centennial-scales: evidence from lake sediment document in Minqin Basin, NW China. Chin Sci Bull, 46(23): 1942-1947

[8]

Chen J A, Wan G J, Zhang D, Zhang F, Huang R (2004). Environmental records of different time scales in lake-sediments: grain-size of sediments. Sci China Ser D, 47: 954-960

[9]

Chen L H, Qu Y G (1992). Water-land Resources and Reasonable Development and Utilization in the Hexi Region. Beijing: Science Press (in Chinese)

[10]

China Meteorological Administration (1994). Atlas of the Climatic Resources of China. Beijing: China Atlas Press (in Chinese)

[11]

Dean W E (1999). The carbon cycle and biogeochemical dynamics in lake sediments. J Paleolimnol, 21(4): 375-393

[12]

Ding H, Zhang J (2005). Goechemical properties and evolution of groundwater beneath the Hexi Corridor, Gansu Province. Arid Zone Research, 22: 24-28 (in Chinese)

[13]

Dykoski C A, Edwards R L, Cheng H, Yuan D, Cai Y, Zhang M, Lin Y, Qing J, An Z, Revenaugh J (2005). A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett, 233(1-2): 71-86

[14]

Fowell S J, Hansen B C S, Peck J A, Khosbayar P, Ganbold E (2003). Mid to late-Holocene climate evolution of the Lake Telmen basin, North Central Mongolia, based on palynological data. Quat Res, 59(3): 353-363

[15]

Gasse F, Arnold M, Fontes J C, Fort M, Gibert E, Huc A, Li B, Li Y, Liu Q, Melieres F, van Campo E, Wang F, Zhan Q (1991). A 13,000 year climate record from western Tibet. Nature, 353(6346): 742-745

[16]

Gierlowski-Kordesch E, Kelts K (1994). Global Geological Record of Lake Basins. Cambridge: Cambridge University Press

[17]

Gorham E, Dean W E, Sanger J E (1983). The chemical composition of lakes in the north-central United States. Limnol Oceanogr, 28(2): 287-301

[18]

Hammer U T (1986). Saline Lake Ecosystems of the World. Boston: Junk Publishers

[19]

Jiang W Y, Liu T S (2007). Timing and spatial distribution of mid-Holocene drying over northern China: Response to a southeastward retreat of the East Asian Monsoon. J Geophys Res, D, Atmospheres, 112(D24): 1-8

[20]

Lenton T M (2000). Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model. Tellus, 52(5): 1159-1188

[21]

Lerman A (1978). Lake: Chemistry, Geology, Physics. Berlin: Springer-Verlag

[22]

Li E (2011). Comparative study of the sediment characteristics in the Badain Jaran and Tengger Deserts. Xi’an: Doctoral Thesis of Shanxi Normal University (in Chinese)

[23]

Li X, Cheng G, Jin H, Kang E, Che T, Jin R, Wu L, Nan Z, Wang J, Shen Y (2008). Cryospheric change in China. Global Planet Change, 62(3-4): 210-218

[24]

Li Y, Wang N, Cheng H, Zhao Q, Long H (2009). Holocene environmental change in the marginal area of the Asian monsoon: a record from Zhuye Lake, NW China. Boreas, 38(2): 349-361

[25]

Liu C L, Wang M L, Jiao P C, Li S D, Chen Z (2006). Features and formation mechanism of faults and potash-forming effect in the Lop Nur salt lake, Xinjiang, China. Acta Geol Sin, 80: 936-943

[26]

Liu X Q, Dong H L, Rech J A, Matsumoto R, Yang B, Wang Y B (2008a). Evolution of Chaka Salt Lake in NW China in response to climatic change during the latest Pleistocene-Holocene. Quat Sci Rev, 27(7-8): 867-879

[27]

Liu X Q, Herzschuh U, Shen J, Jiang Q, Xiao X (2008b). Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China. Quat Res, 70(3): 412-425

[28]

Liu X Q, Shen J, Wang S M, Wang Y B, Liu W G (2007). Southwest monsoon changes indicated by oxygen isotope of ostracode shells from sediments in Qinghai Lake since the late Glacial. Chin Sci Bull, 52(4): 539-544

[29]

Liu Z (2000). Research on material composition of Salt Lakes in Tengger Desert region. Journal of Salt Lake Research, 8: 21-26 (in Chinese)

[30]

Matter M, Anselmetti F S, Jordanoska B, Wagner B, Wessels M, Wuest A (2010). Carbonate sedimentation and effects of eutrophication observed at the Kalista subaquatic springs in Lake Ohrid (Macedonia). Biogeosciences, 7(11): 3755-3767

[31]

McConnaughey T E D A, Labaugh J W, Rosenberry D O, Striegl R G, Reddy M M, Schuster P F, Carter V (1994). Carbon budget for a groundwater-fed lake: calcification supports summer photosynthesis. Limnol Oceanogr, 39(6): 1319-1332

[32]

Meyers P A, Ishiwatari R (1993). Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem, 20(7): 867-900

[33]

Mischke S, Aichner B, Diekmann B, Herzschuh U, Plessen B, Wünnemann B, Zhang C (2010). Ostracods and stable isotopes of a late glacial and Holocene lake record from the NE Tibetan Plateau. Chem Geol, 276(1-2): 95-103

[34]

Moore P D, Webb J A, Collinson M E (1991). Pollen Analysis. Oxford: Blackwell

[35]

Morinaga H, Itota C, Isezaki N, Goto H, Yaskawa K, Kusakabe M, Liu J, Gu Z, Yuan B, Cong S (1993). Oxygen-18 and carbon-13 records for the last 14 000 years from lacustrine carbonates of Siling-Co (lake) in the Qinghai-Tibetan Plateau. Geophys Res Lett, 20(24): 2909-2912

[36]

Morrill C, Overpeck J T, Cole J E, Liu K, Shen C, Tang L (2006). Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet. Quat Res, 65(2): 232-243

[37]

Pachur H J, Wünnemann B, Zhang H (1995). Lake Evolution in the Tengger Desert, Northwestern China, during the last 40,000 Years. Quat Res, 44(2): 171-180

[38]

Peng Y J, Xiao J L, Nakamura T, Liu B L, Inouchi Y (2005). Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of Daihai Lake in Inner Mongolia of north-central China. Earth Planet Sci Lett, 233(3-4): 467-479

[39]

Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467(7311): 43-51

[40]

Schmalz R F (1966). Environments of marine evaporite deposition. Miner Ind, 35: 1-7

[41]

Schnurrenberger D, Russell J, Kelts K (2003). Classification of lacustrine sediments based on sedimentary components. J Paleolimnol, 29(2): 141-154

[42]

Shen J, Liu X, Wang S, Matsumoto R (2005). Palaeoclimatic changes in the Qinghai Lake area during the last 18000 years. Quat Int, 136(1): 131-140

[43]

Shi Y, Shen Y, Kang E, Li D, Ding Y, Zhang G, Hu R (2007). Recent and future climate change in northwest China. Clim Change, 80(3-4): 379-393

[44]

Sun D (1990). “Tear Drop Pattern” potash deposits in lacustrine facies. Chin J Oceanology Limnol, 8(1): 50-65

[45]

Sun D, Bloemendal J, Rea D K, Vandenberghe J, Jiang F, An Z, Su R (2002). Grain size distribution function of polymodal sediments in hydraulic and Aeolian environments and numerical partitioning of the sedimentary components. Sediment Geol, 152(3-4): 263-277

[46]

Wang H (1987). The water resources of lakes in China. Chin J Oceanology Limnol, 5(3): 263-280

[47]

Wang K, Jiang H, Zhao H (2005a). Atmospheric water vapor transport from westerly and monsoon over the Northwest China. Advances in Water Science, 16: 432-438 (in Chinese)

[48]

Wang Y, Cheng H, Edwards R L, He Y, Kong X, An Z, Wu J, Kelly M J, Dykoski C A, Li X (2005b). The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science, 308(5723): 854-857

[49]

Wen R L, Xiao J L, Chang Z G, Zhai D Y, Xu Q H, Li Y C, Itoh S (2010). Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China. Boreas, 39(2): 262-272

[50]

Williams W D (1991). Chinese and Mongolian saline lakes: a limnological overview. Hydrobiologia, 210(1-2): 39-66

[51]

Wünnemann B, Mischke S, Chen F H (2006). A Holocene sedimentary record from Bosten Lake, China. Palaeogeogr Palaeoclimatol Palaeoecol, 234(2-4): 223-238

[52]

Wünnemann B, Pachur H J, Zhang H C (1998). Climatic and environmental changes in the deserts of Inner Mongolia, China, since the Late Pleistocene. In: Alsharhan A S, Glennie K W, Whittle G L, Kendall C G St C, eds. Quaternary Deserts and Climatic Changes. Balkema, Rotterdaman, 381-394

[53]

Xiao J L, Si B, Zhai D Y, Itoh S, Lomtatidze Z (2008). Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability. J Paleolimnol, 40(1): 519-528

[54]

Xiao J L, Xu Q H, Nakamura T, Yang X L, Liang W D, Inouchi Y (2004). Holocene vegetation variation in the Daihai Lake region of north-central China: a direct indication of the Asian monsoon climatic history. Quat Sci Rev, 23(14-15): 1669-1679

[55]

Zhang H C, Ma Y Z, Li J J, Qi Y, Chen G J, Fang H B, Wünnemann B, Pachur H J (2001). Palaeolake evolution and abrupt climate changes during last glacial period in NW China. Geophys Res Lett, 28(16): 3203-3206

[56]

Zhang H C, Peng J L, Ma Y, Chen G J, Feng Z D, Li B, Fan H F, Chang F Q, Lei G L, Wünnemann B (2004). Late quaternary palaeolake-levels in Tengger Desert, NW China. Palaeogeogr Palaeoclimatol Palaeoecol, 211(1-2): 45-58

[57]

Zhang H C, Wünnemann B, Ma Y Z, Peng J L, Pachur H J, Li L J, Qi Y, Chen G J, Fang H B, Feng Z D (2002). Lake level and climate changes between 42,000 and 18,000 C-14 yr BP in the Tengger Desert, Northwestern China. Quat Res, 58(1): 62-72

[58]

Zhao Q (2005). Environment changes of the Shiyang River drainage since the last deglaciation. Lanzhou: Doctoral Thesis of Lanzhou University (in Chinese)

[59]

Zhao S Q (1983). A new scheme for comprehensive physical regionalization in China. Acta Geogr Sin, 38: 1-10 (in Chinese)

[60]

Zhao Y, Yu Z, Chen F H, Li J (2008). Holocene vegetation and climate change from a lake sediment record in the Tengger Sandy Desert, northwest China. J Arid Environ, 72(11): 2054-2064

[61]

Zheng M, Tang J, Liu J, Zhang F (1993). Chinese saline lakes. Hydrobiogia, 267(1-3): 23-36

[62]

Zheng M, Zhao Y, Liu J (2000). Palaeoclimatic indicators of China’s Quaternary saline lake sediments and hydrochemistry. Acta Geol Sin, 74: 259-265

[63]

Zhou W, Donahua D J, Jull A J T (1999). Radiocarbon AMS dating of pollen concentrated from eolian sediments: implications for monsoon climate change since the late Quaternary. Radiocarbon, 39: 19-26

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (663KB)

1384

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/