Sensitivity studies of high-precision methane column concentration inversion using a line-by-line radiative transfer model

Ci SONG, Jiong SHU, Mandi ZHOU, Wei GAO

Front. Earth Sci. ›› 2013, Vol. 7 ›› Issue (4) : 439-446.

PDF(243 KB)
PDF(243 KB)
Front. Earth Sci. ›› 2013, Vol. 7 ›› Issue (4) : 439-446. DOI: 10.1007/s11707-013-0391-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Sensitivity studies of high-precision methane column concentration inversion using a line-by-line radiative transfer model

Author information +
History +

Abstract

Hyper-spectral remote sensing may provide anβeffective solutionβto retrieve the methane (CH4) concentration in an atmospheric column. As a result of exploringβthe absorptive characteristics of CH4,βan appropriate band is selected from hyperspectral data for the detection ofβitsβcolumn concentration with high precision. Following the most recent inversion theory and methods, the line-by-line radiative transfer model (LBLRTM) is employed to forward model the impact of four sensitive factors on inversion precision, including CH4 initial profile, temperature, overlapping gases, and surface albedo. The results indicate that the four optimized factors could improve the inversion precision of atmospheric CH4 column concentration.

Keywords

methane / inversion / radiance / sensitivity / forward model / high precision

Cite this article

Download citation ▾
Ci SONG, Jiong SHU, Mandi ZHOU, Wei GAO. Sensitivity studies of high-precision methane column concentration inversion using a line-by-line radiative transfer model. Front Earth Sci, 2013, 7(4): 439‒446 https://doi.org/10.1007/s11707-013-0391-x

References

[1]
Barrie L A, Braathen G O, Butler J H, Dlugokencky E, Hofmann D J, Tans P, Tsutsumi Y (2011). WMO Greenhouse Gas Bulletin: the State of Greenhouse Gases in the Atmosphere Using Global Observations through 2010, WMO, 2078–0796
[2]
Bergamaschi P, Krol M, Dentener F, Vermeulen A, Meinhardt F, Graul R, Ramonet M, Peters W, Dlugokencky E J (2005). Inverse modelling of national and European CH4βemissions using the atmospheric zoom model TM5. Atmos Chem Phys, 5(9): 2431–2460
CrossRef Google scholar
[3]
Blumsteina D, Chalona G, Carliera T, Buila C, Hberta P, Maciaszeka T, Poncea G, Phulpina T, Tournierb B, Simonic D, Astrucc P, Claussc A, Kayald G, Jegoue R (2004). IASI instrument: technical overview and measured performances. In: Proceedings of the 5th International Conference on Space Optics, 2004, Denver, USA, 49–56
[4]
Dai T, Shi G Y (2008). Numerical simulation study of atmospheric CO2 concentration from FY-3 satellite. In: Proceedings of Satellite Remote Sensing Application Technology and the Processing Method of Chinese Meteorological Society Annual Conference in 2008 in a Breakout Room. 2008, Beijing, China (in Chinese)
[5]
de Chazournes L B (1998). Kyoto Protocol to the United Nations Framework Convention on Climate Change. UN’s Audiovisual Library of International Law (http://untreaty. un. org/cod/avl/ha/kpccc/kpccc. html)
[6]
Dlugokencky E J, Steele L P, Lang P M, Masarie K A (1994). The growth rate and distribution of atmospheric methane. J Geophys Res, 99(D8): 17021–17043
CrossRef Google scholar
[7]
Etheridge D M, Pearma G I, Fraser P J (1992). Changes in atmospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core. Tellus B Chem Phys Meterol, 44(4): 282–294
CrossRef Google scholar
[8]
Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D W, Haywood J, Lean J, Lowe D C, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland R V (2007). Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L, eds. Climate Change 2007: the Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 140
[9]
Frankenberg C, Aben I, Bergamaschi P, Dlugokencky E J, van Hees R, Houweling S, van der Meer P, Snel R, Tol P (2011). Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: trends and variability. J Geophys Res, 116(D4), doi: 10.1029/2010JD014849
[10]
Grutzen P J (1995). On the role of CH4 in atmospheric chemistry: sources, sinks and possible reductions in anthropogenic sources. Ambio, 24: 52–55
[11]
Ho S P, Smith W L, Huang H L (2002). Retrieval of atmospheric-temperature and water-vapor profiles by use of combined satellite and ground-based infrared spectral-radiance measurements. Appl Opt, 41(20): 4057–4069
CrossRef Pubmed Google scholar
[12]
Khalil M A K, Rasmussen R A (1987). Atmospheric methane: trends over the last 10000 years. Atmos Environ, 21(11): 2445–2452
CrossRef Google scholar
[13]
Liou K N (1991). Thermal Infrared Radiation Transfer in the Atmosphere, An Introduction to Atmospheric Radiation (2nd Edition). California: Academic Press, 116–168
[14]
Mao J P, Kawa S R (2004). Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight. Appl Opt, 43(4): 914–927
CrossRef Pubmed Google scholar
[15]
Masiello G, Serio C, Carissimo A, Grieco G, Matricardi M (2009). Application of ϕ-IASI to IASI: retrieval products evaluation and radiative transfer consistency. Atmos Chem Phys Discuss, 9(2): 9647–9691
CrossRef Google scholar
[16]
Parker R,βBoesch H,βCogan A,βFraser A, Feng L,βPalmer P I,βMesserschmidt J, Deutscher N,βGriffith D W T,βNotholt J,βWennberg P O,βWunch D (2011). Methane observations from the Greenhouse Gases Observing Satellite: comparison to ground-based TCCON data and model calculations. Geophys Res Lett, 38(15), doi: 10.1029/2011GL047871
[17]
Qin Y, Zhao C S (2003). Atmospheric Chemical Basis. Beijing: China Meteorological Press, 50–51 (in Chinese)
[18]
Rothman L S, Gordon I E, Barbe A, Rothman L S, Gordon I E, Barbe A, Chris Benner D, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P, Chance K, Coudert L H, Danaj V, Devi V M, Fally S, Flaud J M, Gamache R R, Goldmanm A, Jacquemart D, Kleiner I, Lacome N, Lafferty W J, Mandin J Y, Massie S T, Mikhailenko S N, Miller C E, Moazzen-Ahmadi N, Naumenko O V, Nikitin A V, Orphal J, Perevalov V I, Perrin A, Predoi-Cross A, Rinsland C P, Rotger M, Šimečková M, Smith M A H, Sung K, Tashkun S A, Tennyson J, Toth R A, Vandaele A C, Vander Auwera J (2009). The HITRAN 2008 molecular spectroscopic database. J Quant Spectrosc Radiat Transf, 110(9–10): 533–572
[19]
Shi G Y (2007). Atmospheric Radiation. Beijing: Academic Press, 4–42 (in Chinese)
[20]
Wallace J M, Hobbs P V (2006). Radiative transfer, Atmospheric Science (2nd Edition): An Introductory Survey. University of Washington, Salt Lake: Academic Press, 113–121
[21]
Yang Z H, Toon G C, Margolis J S, Wennberg P D (2002). Atmospheric CO2 retrieved from ground-based near IR solar spectra. Geophys Res Lett, 29(9): 1339
CrossRef Google scholar
[22]
Ye H H, Wang X H, Wu J, Fang Y H, Xiong W, Cui F X (2011). Sensitivity for retrieval of atmospheric column carbon dioxide with high accuracy. Journal of Atmospheric and Environmental Optics, 6(3): 208–214 (in Chinese)
[23]
Zeng Q C (1974). Introduction, Atmospheric Infrared Telemetry Theory. Beijing: Academic Press, 3–9 (in Chinese)
[24]
Zhou L X, Li J L (1990). Atmospheric Environmental Chemistry. Beijing: Higher Education Press, 48–51, 305–306 (in Chinese)

Acknowledgements

This project was supported by the National Basic Research Program of China (No. 2010CB951603) and the Shanghai Science and Technology Support Program-Special for EXPO (No. 10DZ0581600). The computation was supported by the High Performance Computer Center of East China Normal University. We thank Prof. Jietai Mao of the Department of Atmospheric & Oceanic Sciences, Peking University, China for providing expert advice and assistance regarding in inversion theory and methods, the line-by-line radiative transfer model.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(243 KB)

Accesses

Citations

Detail

Sections
Recommended

/