Flooding impact on the distribution of microbial tetraether lipids in paddy rice soil in China
Asma AYARI, Huan YANG, Shucheng XIE
Flooding impact on the distribution of microbial tetraether lipids in paddy rice soil in China
Isoprenoid and branched glycerol dialkyl glycerol tetraethers (GDGTs) lipids were studied in flooded and non-flooded paddy soil in Wuhan, central China, to examine the response of the GDGTs distribution to the soil flooding. Samples were collected before and after the soil flooding in four specific months. Both core (CL) and intact polar (IPL) GDGTs were quantified. Increase in the abundance of archaeol and caldarchaeol may be indicative of the occurrence of methanogens in the flooded soil. A negative correlation was observed between the ratio of IPL branched GDGT-IIa to GDGT-Ia and the soil pH. The rise of the soil pH in the acid soil is known to be controlled by the redox conditions resulting from flooding. Thus, the branched GDGTs distribution may be controlled by the water content in the paddy soil. In addition, we suggest that the anoxic conditions resulting from flooding may also control the abundance of branched GDGTs relative to crenarchaeol, which in turn results in the increase of branched and isoprenoidal tetraethers (BIT) values, the index for the terrestrial input to the marine sediments.
glycerol dialkyl glycerol tetraethers (GDGTs) / soil flooding / soil pH / redox conditions / GDGTs distribution / branched and isoprenoidal tetraethers (BIT)
[1] |
Bligh E G, Dyer W J (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 37(8): 911–917
CrossRef
Pubmed
Google scholar
|
[2] |
Chen X P, Zhu Y G, Xia Y, Shen J P, He J Z (2008). Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environ Microbiol, 10(8): 1978–1987
CrossRef
Pubmed
Google scholar
|
[3] |
Chin K J, Rainey F A, Janssen P H, Conrad R (1998). Methanogenic degradation of polysaccharides and the characterization of polysaccharolytic clostridia from anoxic rice field soil. Syst Appl Microbiol, 21(2): 185–200
CrossRef
Google scholar
|
[4] |
Großkopf R R, Stubner S, LiesackW (1998). Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol, 64(12): 4983–4989
Pubmed
|
[5] |
Harvey H R, Fallon R D, Patton J S (1986). The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments. Geochim Cosmochim Acta, 50(5): 795–804
CrossRef
Google scholar
|
[6] |
Hopmans E C, Schouten S, Pancost R D, van der Meer M T J, Sinninghe Damsté J S (2000). Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom, 14(7): 585–589
CrossRef
Pubmed
Google scholar
|
[7] |
Hopmans E C, Weijers J W H, Schefuß E, Herfort L, Sinninghe Damsté J S, Schouten S (2004). A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett, 224(1-2): 107–116
CrossRef
Google scholar
|
[8] |
Huguet A, Fosse C, Laggoun-Défarge F, Toussaint M L, Derenne S (2010a). Occurrence and distribution of glycerol dialkyl glycerol tetraethers in a French peat bog. Org Geochem, 41(6): 559–572
CrossRef
Google scholar
|
[9] |
Huguet A, Fosse C, Metzger P, Fritsch E, Derenne S (2010b). Occurrence and distribution of non-extractable glycerol dialkyl glycerol tetraethers in temperate and tropical podzol profiles. Org Geochem, 41(8): 833–844
CrossRef
Google scholar
|
[10] |
Huguet A, Wiesenberg G L B, Gocke M, Fosse C, Derenne S (2012). Branched tetraether membrane lipids associated with rhizoliths in loess: Rhizomicrobial overprinting of initial biomarker record. Org Geochem, 43: 12–19
CrossRef
Google scholar
|
[11] |
Huguet C, Hopmans E C, Febo-Ayala W, Thompson D H, Sinninghe Damsté J S, Schouten S (2006). An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem, 37(9): 1036–1041
CrossRef
Google scholar
|
[12] |
Jones R T, Robeson M S, Lauber C L, Hamady M, Knight R, Fierer N (2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J, 3(4): 442–453
CrossRef
Pubmed
Google scholar
|
[13] |
Kates M, Kushner D J, Matheson A T (1993). The biochemistry of Archaea (Archaebacteria). Amsterdam: Elsevier Science Publishers
|
[14] |
Kim J H, Van der Meer J, Schouten S, Helmke P, Willmott V, Sangiorgi F, Koç N, Hopmans E C, Sinninghe Damsté J S (2010). New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions. Geochim Cosmochim Acta, 74(16): 4639–4654
CrossRef
Google scholar
|
[15] |
Koga Y, Kyuragi T, Nishihara M, Sone N (1998a). Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J Mol Evol, 46(1): 54–63
CrossRef
Pubmed
Google scholar
|
[16] |
Koga Y, Morii H, Akagawa-Matsushita M, Ohga M (1998b). Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts. Biosci Biotechnol Biochem, 62(2): 230–236
CrossRef
Google scholar
|
[17] |
Könneke M, Bernhard A E, de la Torre J R, Walker C B, Waterbury J B, Stahl D A (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058): 543–546
CrossRef
Pubmed
Google scholar
|
[18] |
Liesack W, Schnell S, Revsbech N P (2000). Microbiology of flooded rice paddies. FEMS Microbiol Rev, 24(5): 625–645
CrossRef
Pubmed
Google scholar
|
[19] |
Liu X L, Leider A, Gillespie A, Gröger J, Versteegh G J M, Hinrichs K U (2010). Identification of polar lipid precursors of the ubiquitous branched GDGT orphan lipids in a peat bog in Northern Germany. Org Geochem, 41(7): 653–660
CrossRef
Google scholar
|
[20] |
Logemann J, Graue J, Köster J, Engelen B, Rullkötter J, Cypionka H (2011). A laboratory experiment of intact polar lipid degradation in sandy sediments. J Biosci, 8: 3289–3321
|
[21] |
Loomis S E, Russell J M, Sinninghe Damsté J S (2011). Distributions of branched GDGTs in soils and lake sediments from western Uganda: Implications for a lacustrine paleothermometer. Org Geochem, 42(7): 739–751
CrossRef
Google scholar
|
[22] |
Lu Y, Conrad R (2005). In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science, 309(5737): 1088–1090
CrossRef
Pubmed
Google scholar
|
[23] |
Lu Y, Lueders T, Friedrich M W, Conrad R (2005). Detecting active methanogenic populations on rice roots using stable isotope probing. Environ Microbiol, 7(3): 326–336
CrossRef
Pubmed
Google scholar
|
[24] |
Oba M, Sakata S, Tsunogai U (2006). Polar and neutral isopranyl glycerol ether lipids as biomarkers of archaea in near-surface sediments from the Nankai Trough. Org Geochem, 37(12): 1643–1654
CrossRef
Google scholar
|
[25] |
Pancost R D, Hopmans E, Sinninghe Damsté J S (2001). Archaeal lipids in Mediterranean cold seeps: molecular proxies for anaerobic methane oxidation. Geochim Cosmochim Acta, 65(10): 1611–1627
CrossRef
Google scholar
|
[26] |
Pancost R D, Sinninghe Damsté J S (2003). Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem Geol, 195(1-4): 29–58
CrossRef
Google scholar
|
[27] |
Peterse F, Prins M A, Beets C J, Troelstra S R, Zheng H, Gu Z, Schouten S, Sinninghe Damsté J S (2011). Decoupled warming and monsoon precipitation in East Asia over the last deglaciation. Earth Planet Sci Lett, 301(1-2): 256–264
CrossRef
Google scholar
|
[28] |
Peterse F, van der Meer J, Schouten S, Weijers J W H, Fierer N, Jackson R B, Kim J H, Sinninghe Damsté J S (2012). Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochim Cosmochim Acta, 96: 215–229
CrossRef
Google scholar
|
[29] |
Pitcher A, Hopmans E C, Schouten S, Sinninghe Damsté J S (2009). Separation of core and intact polar archaeal tetraether lipids using silica columns: Insights into living and fossil biomass contributions. Org Geochem, 40(1): 12–19
CrossRef
Google scholar
|
[30] |
Pitcher A, Wutcher C, Siddenberg K, Schouten S, Sinninghe Damsté J S (2011). Crenarchaeol tracks winter blooms of ammonia-oxidizing Thaumarchaeota in the coastal North Sea. Limnol Oceanogr, 56(6): 2308–2318
CrossRef
Google scholar
|
[31] |
Ponnamperuma F N (1985). Chemical kinetics of wetland rice soils relative to soil fertility. In: Proceeding of wetland soils: characterization, classification and utilization. Philippines, International Rice Research Institute, 71–89
|
[32] |
Revsbech N, Pedersen O, Reichardt W, Briones A (1999). Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biol Fertil Soils, 29(4): 379–385
CrossRef
Google scholar
|
[33] |
Schouten S, Hopmans E C, Schefuß E, Sinninghe Damsté J S (2002). Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett, 204(1-2): 265–274
CrossRef
Google scholar
|
[34] |
Schouten S, Huguet C, Hopmans E C, Kienhuis M V M, Sinninghe Damsté J S (2007). Improved analytical methodology and constraints on analysis of the TEX86 paleothermometer by high performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Anal Chem, 79(7): 2940–2944
CrossRef
Pubmed
Google scholar
|
[35] |
Sinninghe Damsté J S, Schouten S, Hopmans E C, van Duin A C, Geenevasen J A (2002). Crenarchaeol the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J Lip Res, 43(10): 1641–1651
CrossRef
Google scholar
|
[36] |
Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, Weijers J W H, Foesel B U, Overmann J, Dedysh S N (2011). 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl Environ Microbiol, 77(12): 4147–4154
CrossRef
Pubmed
Google scholar
|
[37] |
Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, Jung M Y, Kim J G, Rhee S K, Stieglmeier M, Schleper C (2012). Intact Polar and Core Glycerol Dibiphytanyl Glycerol Tetraether Lipids of Group I. 1a and I. 1b Thaumarchaeota in Soil. Appl Environ Microbiol, 78(19): 6866–6874
CrossRef
Google scholar
|
[38] |
Sturt H F, Summons R E, Smith K, Elvert M, Hinrichs K U (2004). Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom, 18(6): 617–628
CrossRef
Pubmed
Google scholar
|
[39] |
Tierney J E, Russell J M (2009). Distributions of branched GDGTs in a tropical lake system: implications for lacustrine application of the MBT/CBT palaeoproxy. Org Geochem, 40(9): 1032–1036
CrossRef
Google scholar
|
[40] |
Tierney J E, Russell J M, Eggermont H, Hopmans E C, Verschuren D, Sinninghe Damsté J S (2010). Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments. Geochim Cosmochim Acta, 74(17): 4902–4918
CrossRef
Google scholar
|
[41] |
Tierney J E, Schouten S, Pitcher A, Hopmans E C, Sinninghe Damsté J S (2012). Core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in Sand Pond, Warwick, Rhode Island (USA): insights into the origin of lacustrine GDGTs. Geochim Cosmochim Acta, 77: 561–581
CrossRef
Google scholar
|
[42] |
Weijers J W H, Panoto E, van Bleijswijk J, Schouten S, Rijpstra W I C, Balk M, Stams A J M, Sinninghe Damsté J S (2009). Constraints on the biological source (s) of the orphan branched tetraether membrane lipids. Geomicrobiol J, 26(6): 402–414
CrossRef
Google scholar
|
[43] |
Weijers J W H, Schefuss E, Schouten S, Sinninghe Damsté J S (2007a). Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation. Science, 315(5819): 1701–1704
CrossRef
Pubmed
Google scholar
|
[44] |
Weijers J W H, Schouten S, Hopmans E C, Geenevasen J A J, David O R P, Coleman J M, Pancost R D, Sinninghe Damsté J S (2006). Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ Microbiol, 8(4): 648–657
CrossRef
Pubmed
Google scholar
|
[45] |
Weijers J W H, Schouten S, van den Donker J C, Hopmans E C, Sinninghe Damsté J S (2007b). Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim Cosmochim Acta, 71(3): 703–713
CrossRef
Google scholar
|
[46] |
Weijers J W H, Wiesenberg G L B, Bol R, Hopmans E C, Pancost R D (2010). Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism (s). Biogeosciences, 7(9): 2959–2973
CrossRef
Google scholar
|
[47] |
White D, Davis W, Nickels J, King J, Bobbie R (1979). Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia, 40(1): 51–62
CrossRef
Google scholar
|
[48] |
Yang H, Ding W, Wang J, Jin C, He G, Qin Y, Xie S (2012). Soil pH impact on microbial tetraether lipids and terrestrial input index (BIT) in China. Science China (Earth Sciences), 55(2): 236–245
CrossRef
Google scholar
|
[49] |
Yang H, Ding W, Zhang C L, Wu X, Ma X, He G, Huang J, Xie S (2011). Occurrence of tetraether lipids in stalagmites: Implications for sources and GDGT-based proxies. Org Geochem, 42(1): 108–115
CrossRef
Google scholar
|
/
〈 | 〉 |