A typical flat-panel membrane bioreactor with a composite membrane for sulfur removal

Jian GUAN , Yuan XIAO , Jimin SONG , Junhe MIAO

Front. Earth Sci. ›› 2014, Vol. 8 ›› Issue (1) : 142 -149.

PDF (261KB)
Front. Earth Sci. ›› 2014, Vol. 8 ›› Issue (1) : 142 -149. DOI: 10.1007/s11707-013-0370-2
RESEARCH ARTICLE
RESEARCH ARTICLE

A typical flat-panel membrane bioreactor with a composite membrane for sulfur removal

Author information +
History +
PDF (261KB)

Abstract

The aim of this work was to provide a concrete study to understand the effects of operation on biofilm morphology and microstructure and degradation efficiency for the disposal of sulfur dioxide produced by coal-fired power plants. For this purpose, a flat-panel reactor–membrane bioreactor (MBR) with a composite membrane consisting of a dense layer and a support layer was designed; the membrane bioreactors inoculated with Thiobacillus ferrooxidans were further conducted for the removal of sulfur dioxide. Dry weight, active biomass, pressure drop, removal efficiency, morphology and structure of the formed biofilms were investigated and analyzed over period of biofilm formation. The results found that the dry weight, biomass, pressure drops and removal efficiency increased rapidly during biofilm formation, remained relatively stable in the stabilization period of biofilm growth, and finally reached 0.085 g, 7.00 μg, 180 Pa, and 78%, respectively. Our results suggested the MBR is available for flue-gas desulfurization.

Keywords

membrane bioreactor / biofilm / flue gas desulfurization / biodegradation / sulfur dioxide

Cite this article

Download citation ▾
Jian GUAN, Yuan XIAO, Jimin SONG, Junhe MIAO. A typical flat-panel membrane bioreactor with a composite membrane for sulfur removal. Front. Earth Sci., 2014, 8(1): 142-149 DOI:10.1007/s11707-013-0370-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ali A, Srivastava S K, Haque R (1992). Chemical desulphurization of high sulphur coals. Fuel, 71(7): 835-839

[2]

Bai J H, Cui B S, Chen B, Zhang K J, Deng W, Gao H F, Xiao R (2011). Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecol Modell, 222(2): 301-306

[3]

Bhadra A, Scharer J M, Moo-Young M (1987). Microbial desulphurization of heavy oils and bitumen. Biotechnol Adv, 5(1): 1-27

[4]

Bos P, Huber T F, Luyben K Ch A M, Kuenen J G (1988). Feasibility of a Dutch process for microbial desulphurization of coal. Resources, Conservation and Recycling, 1(3-4): 279-291

[5]

Chen B, Chen G Q (2006a). Exergy analysis for resource conversion of the Chinese society 1993 under the material product system. Energy, 31(8-9): 1115-1150

[6]

Chen B, Chen G Q (2006b). Ecological footprint accounting based on emergy-A case study of the Chinese society. Ecological Modelling, 198(1-2): 101-114

[7]

Chen B, Chen G Q (2007). Modified ecological footprint accounting and analysis based on embodied exergy—a case study of the Chinese society 1981-2001. Ecol Econ, 61(2-3): 355-376.

[8]

Chen B, Chen G Q, Yang Z F (2006a). Exergy-based resource accounting for China. Ecological Modelling, 196(3-4): 313-328

[9]

Chen B, Chen G Q, Yang Z F, Jiang M M (2007). Ecological footprint accounting for energy and resource in China. Energy Policy, 35(3): 1599-1609

[10]

Chen B, Chen Z M, Zhou Y, Zhou J B, Chen G Q (2009). Emergy as embodied energy based assessment for local sustainability of a constructed wetland in Beijing. Commun Nonlinear Sci Numer Simul, 14(2): 622-635

[11]

Chen B, He G X, Qi J, Su M R, Zhou S Y, Jiang M M (2012a). Greenhouse gas inventory of a typical high-end industrial park in China. ScientificWorldJournal,

[12]

Chen B, He G X, Yang J, Zhang J R, Su M R, Qi J (2012b). Evaluating ecological and economic benefits of a low-carbon industrial park based on millennium ecosystem assessment framework. ScientificWorldJournal, 2012, 909317 1-9

[13]

Chen B, Zeng L, Wu Y H, Ji P, Zhao Y J (2012c). Transport of bicomponent contaminant in free-surface wetland flow. J Hydrodynam, 24(6): 925-929

[14]

Chen G Q, Chen B (2009). Extended exergy analysis of the Chinese society. Energy, 34(9): 1127-1144

[15]

Chen G Q, Jiang M M, Chen B, Yang Z F, Lin C (2006b). Emergy analysis of Chinese agriculture. Agric Ecosyst Environ, 115(1-4): 161-173

[16]

Chen R, Liao Q, Zhu X, Wang Y Z, Liao H (2004). Visualization test for purification of toluene in biofilter with a regular porous structure. J Eng Thermophys, 25(3): 481-483

[17]

Chen S Q, Chen B (2012a). Network environ perspective for urban metabolism and carbon emissions: a case study of Vienna, Austria. Environ Sci Technol, 46(8): 4498-4506

[18]

Chen S Q, Chen B (2012b). Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: an emergy analysis. Renew Sustain Energy Rev, 16(6): 3948-3959

[19]

Chen S Q, Chen B, Song D (2012d). Life-cycle energy production and emissions mitigation by comprehensive biogas-digestate utilization. Bioresour Technol, 114: 357-364

[20]

Chen Z M, Chen B, Chen G Q (2011). Cosmic exergy based ecological assessment for a wetland in Beijing. Ecol Modell, 222(2): 322-329

[21]

Chen Z M, Chen B, Zhou J B, Li Z, Zhou Y, Xi X R, Lin C, Chen G Q (2008). A vertical subsurface-flow constructed wetland in Beijing. Commun Nonlinear Sci Numer Simul, 13(9): 1986-1997

[22]

Chen Z M, Chen G Q, Zhou J B, Jiang M M, Chen B (2010). Ecological input-output modeling for embodied resources and emissions in Chinese economy. Commun Nonlinear Sci Numer Simul, 15(7): 1942-1965

[23]

Dai J, Fath B D, Chen B (2012). Constructing a network of the Social-economic Consumption System of China using Extended Exergy Analysis. Renew Sustain Energy Rev, 16(7): 4796-4808

[24]

Eligwe C A (1988). Microbial desulphurization of coal. Fuel, 67(4): 451-458

[25]

Evrim E, Tülay D, Tijen Ö B, Yuda Y (1998). The effect of lignite type and particle size on microbial desulphurization by Rhodococcus rhodochrous. Fuel, 77(9-10): 1121-1124

[26]

Feng L, Wang D G, Chen B (2011). Water quality modeling for a tidal river network: A case study of the Suzhou River. Frontiers of Earth Science, 5(4): 428-431

[27]

He W, Zhang Y Y, Tian R, Hu H X, Chen B, Chen L K, Xu F L (2013). Modeling the purification effects of the constructed Sphagnum wetland on phosphorus and heavy metals in Dajiuhu Wetland Reserve, China. Ecol Modell,

[28]

Howell J A (2004). Future of membranes and membrane reactors in green technologies and for water reuse. Desalination, 162: 1-11

[29]

Huang L B, Bai J H, Chen B, Zhang K J, Huang C, Liu P P (2012). Two-decade wetland cultivation and its effects on soil properties in salt marshes in the Yellow River Delta, China. Ecol Inform, 10: 37-48

[30]

Huang L Q, Chen G Q, Zhang Y, Chen B, Luan S J (2007). Exergy as a unified measure of water quality. Commun Nonlinear Sci Numer Simul, 12(5): 663-672

[31]

Hubacek K, Feng K S, Chen B (2012). Changing lifestyles towards a low carbon economy: an IPAT analysis for China. Energies, 5(12): 22-31

[32]

Iranpour R, Cox H H J, Deshusses M A, Schroeder E D (2005). Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ Prog, 24(3): 254-267

[33]

Ji X, Chen G Q, Chen B, Jiang M M (2009). Exergy-based assessment for waste gas emissions from Chinese Transportation. Energy Policy, 37(6): 2231-2240

[34]

Jiang M M, Chen B, Zhou J B, Tao F R, Li Z, Yang Z F, Chen G Q (2007). Emergy account for biomass resource exploitation by agriculture in China. Energy Policy, 35(9): 4704-4719

[35]

Jiang M M, Zhou J B, Chen B, Chen G Q (2008). Emergy-based ecological account for the Chinese Economy in 2004. Commun Nonlinear Sci Numer Simul, 13(10): 2337-2356

[36]

Jiang M M, Zhou J B, Chen B, Yang Z F, Ji X, Zhang L X, Chen G Q (2009). Ecological evaluation of Beijing economy based on emergy indices. Commun Nonlinear Sci Numer Simul, 14(5): 2482-2494

[37]

Ju L P, Chen B (2011). Embodied energy and emergy evaluation of a typical biodiesel production chain in China. Ecol Modell, 222(14): 2385-2392

[38]

Kusnierova M, Prascakova M, Fecko P, Janakova I (2010). Chemical and biological desulphurization of boiler coal. J Biotechnol, 150: 252

[39]

Liu G B, Liu W J, Xu J J, Chen Z X, Tao X P (2009). Study on effects of flydust on limestone dissolution characteristics for desulfurization. Environ Sci Technol, 22(2): 26-28

[40]

Liu G B, Tan W Y, Liu W J, Tu Y, Wu W, Tao X P (2008). Dissolution of limestone in WFGD and its mathematic model. Jiangsu Environmental Science and Technology, 21(5): 26-28

[41]

Lu Y, Su M R, Liu G Y, Chen B, Zhou S Y, Jiang M M (2012). Ecological network analysis for a low-carbon and high-tech industrial park. ScientificWorldJournal, 2012: 1-9

[42]

Olsson G, Larsson L, Holst O, Karlsson H T (1989). Microorganisms for desulphurization of coal: the influence of leaching compounds on their growth. Fuel, 68(10): 1270-1274

[43]

Pereira M O, Morin P, Vieira M J, Melo L F (2002). A versatile reactor for continuous monitoring of biofilm properties in laboratory and industrial conditions. Lett Appl Microbiol, 34(1): 22-26

[44]

Pysh'yev S, Gunka V, Prysiazhnyi Y, Shevchuk K, Pattek-Janczyk A (2012). Study of the oxidative desulphurization process of coal with different metamorphism degrees. Journal of Fuel Chemistry and Technology, 40(2): 129-137

[45]

Qu Y H, Lin C, Zhou W, Li Y, Chen B, Chen G Q (2009a). Effects of CO2 concentration and moisture content of sugar-free media on the tissue-cultured plantlets in large growth chamber. Commun Nonlinear Sci Numer Simul, 14(1): 322-330

[46]

Qu Y H, Wei X M, Hou Y F, Chen B, Chen G Q, Lin C (2009b). Analysis for an environmental friendly seedling breeding system. Commun Nonlinear Sci Numer Simul, 14(4): 1766-1772

[47]

Richard F, Yan J Y, Felix S, Sascha P (2011). Flue gas desulphurization for hot recycle Oxyfuel combustion: Experiences from the 30 MWth Oxyfuel pilot plant in Schwarze Pumpe. Int J Greenh Gas Control, 5: S210-S223

[48]

Song D, Su M R, Yang J, Chen B (2012). Greenhouse gas emission accounting and management of low-carbon community. Scientific World Journal, 2012, 613721, 1-6

[49]

Su M R, Chen L, Chen B, Chen S Q, Yang Z F (2012). Low-carbon Development Patterns: Observations of Typical Chinese Cities. Energies, 5(2): 291-304

[50]

Sun K Q, Zhong Q (2005). The design construction and operation of gas desulfurization system in power plant. M. BeiJing: Chemical Industry Press, 105-106

[51]

Wang X, Meng L, Chen B, Yang Z F, Li C (2009a). Simulation of nitrogen contaminant transportation by a compact difference scheme in the downstream Yellow River, China. Commun Nonlinear Sci Numer Simul, 14(3): 935-945

[52]

Wang Y G, Gao D, Lin J W, Wei D Z (2005). Study on operational conditions of microorganism cultivation for flue gas desulfurization and technological properties of bioreactor start-up. Modern Chemical Industry, 25(5): 40-43

[53]

Więckowska J (1995). Catalytic and adsorptive desulphurization of gases. Catal Today, 24(4): 405-465

[54]

Xu F L, Wang J J, Chen B, Qin N, Wu W J, He W, He Q S, Wang Y (2011). The variations of exergies and structural exergies along eutrophication gradients in Chinese and Italian lakes. Ecol Modell, 222(2): 337-350

[55]

Yang J, Chen B, Qi J, Zhou S Y, Jiang M M (2012). Life-cycle-based multicriteria sustainability evaluation of industrial parks: a case study in China. ScientificWorldJournal, 2012: 917830 1-9

[56]

Yang J, Chen W C, Chen B (2011b). Impacts of biogas projects on agro-ecosystem in rural areas — A case study of Gongcheng. Frontiers of Earth Science, 5(3): 317-322

[57]

Yang Q, Chen B, Ji X, He Y F, Chen G Q (2009). Exergetic evaluation of corn-ethanol production in China. Commun Nonlinear Sci Numer Simul, 14(5): 2450-2461

[58]

Yang Z F, Chen B (2011). Systematic studies on wetlands in China. Ecol Modell, 222(2): 221-223

[59]

Yang Z F, Chen B (2012). Anthropogenic impacts on multi-scale ecosystems. Ecol Inform, 10: 1

[60]

Yang Z F, Jiang M M, Chen B, Zhou J B, Chen G Q, Li S C (2010). Solar Emergy evaluation for Chinese economy. Energy Policy, 38(2): 875-886

[61]

Yu Y S, Yang J, Chen B (2012). Smart grid in China-a review. Energies, 5(12): 1321-1338

[62]

Zeng L, Wu Y H, Ji P, Chen B, Zhao Y J, Chen G Q, Wu Z (2012). Effect of wind on contaminant dispersion in a wetland flow dominated by free-surface effect. Ecol Modell, 237-238: 101-108

[63]

Zhan J, Yan H, Chen B, Luo J, Shi N (2012). Decomposing analysis of the mechanisms behind the spatial and temporal patterns of changes in carbon sequestration in China. Energies, 5(12): 386-398

[64]

Zhang D C, Zhang M X, Chen Q R (2009). Study on coal bio-magnetizing desulphurization. Procedia Earth and Planetary Science, 1(1): 673-678

[65]

Zhang L X, Feng Y Y, Chen B (2011). Alternative Scenarios for the Development of a Low-Carbon City: A Case Study of Beijing, China. Energies, 4(12): 2295-2310

[66]

Zhang L X, Song B, Chen B (2012). Emergy-based analysis of four farming systems: insight into agricultural diversification in rural China. J Clean Prod, 28: 33-44

[67]

Zhang X H, Zhang H W, Chen B, Chen G Q, Zhao X H (2008). Water resources strategic based on complex system dynamics: a case study of Tianjin city. Commun Nonlinear Sci Numer Simul, 13(10): 2328-2336

[68]

Zhao R, Yang Z F, Sun T, Chen B, Chen G Q (2009a). Freshwater inflow requirements for the protection of the critical habitat and the drinking water sources in the Yangtze River Estuary, China. Commun Nonlinear Sci Numer Simul, 14(5): 2507-2518

[69]

Zhao X, Chen B, Yang Z F (2009b). National water footprint in an input-output framework-a case study of China 2002. Ecol Modell, 220(2): 245-253

[70]

Zhou J B, Jiang M M, Chen B, Chen G Q (2009). Emergy evaluations for constructed wetland and conventional wastewater treatments. Commun Nonlinear Sci Numer Simul, 14(4): 1781-1789

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (261KB)

1333

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/