The calibration methods for Multi-Filter Rotating Shadowband Radiometer: a review
Maosi CHEN, John DAVIS, Hongzhao TANG, Carolyn OWNBY, Wei GAO
The calibration methods for Multi-Filter Rotating Shadowband Radiometer: a review
The continuous, over two-decade data record from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) is ideal for climate research which requires timely and accurate information of important atmospheric components such as gases, aerosols, and clouds. Except for parameters derived from MFRSR measurement ratios, which are not impacted by calibration error, most applications require accurate calibration factor(s), angular correction, and spectral response function(s) from calibration. Although a laboratory lamp (or reference) calibration can provide all the information needed to convert the instrument readings to actual radiation, in situ calibration methods are implemented routinely (daily) to fill the gaps between lamp calibrations. In this paper, the basic structure and the data collection and pretreatment of the MFRSR are described. The laboratory lamp calibration and its limitations are summarized. The cloud screening algorithms for MFRSR data are presented. The in situ calibration methods, the standard Langley method and its variants, the ratio-Langley method, the general method, Alexandrov’s comprehensive method, and Chen’s multi-channel method, are outlined. The reason that all these methods do not fit for all situations is that they assume some properties, such as aerosol optical depth (AOD), total optical depth (TOD), precipitable water vapor (PWV), effective size of aerosol particles, or angstrom coefficient, are invariant over time. These properties are not universal and some of them rarely happen. In practice, daily calibration factors derived from these methods should be smoothed to restrain error.
Multi-Filter Rotating Shadowband Radiometer (MFRSR) / calibration / review
[1] |
Ackerman T P, Stokes G (2003). The atmospheric radiation measurement program. Phys Today, 56(1): 38–45
CrossRef
Google scholar
|
[2] |
Alexandrov, D, Kiedron P, Michalsky J J, Godges G, Flynn C J, Lacis A A (2007). Optical depth measurements by shadow-band radiometers and their uncertainties. Appl Opt, 46(33): 8027–8038
|
[3] |
Alexandrov M D, Lacis A A, Carlson B E, Cairns B (2002). Remote sensing of atmospheric aerosols and trace gases by means of multi-filter rotating shadowband radiometer. part I: retrieval algorithm. J Atmos Sci, 59(3): 524–543
CrossRef
Google scholar
|
[4] |
Alexandrov M D, Lacis A A, Carlson B E, Cairns B (2002b). Remote sensing of atmospheric aerosols and trace gases by means of multi-filter rotating shadowband radiometer. part II: climatological applications. J Atmos Sci, 59(3): 544–566
CrossRef
Google scholar
|
[5] |
Alexandrov M D, Lacis A A, Carlson B E, Cairns B (2008). Characterization of atmospheric aerosols using MFRSR measurements. J Geophys Res, 113(D8): D08204
CrossRef
Google scholar
|
[6] |
Alexandrov M D, Marshak A, Cairns B, Lacis A A, Carlson B E (2004). Automated cloud screening algorithm for MFRSR data. Geophys Res Lett, 31(4): L04118
CrossRef
Google scholar
|
[7] |
Alexandrov M D, Schmid B, Turner D D, Cairns B, Oinas V, Lacis A A, Gutman S I, Westwater E R, Smirnov A, Eilers J (2009). Columnar water vapor retrievals from multifilter rotating shadowband radiometer data. J Geophys Res, 114(D2): D02306
CrossRef
Google scholar
|
[8] |
Augustine J A, Cornwall C R, Hodges G B, Long C N, Medina C I, DeLuisi J J (2003). An automated method of MFRSR calibration for aerosol optical depth analysis with application to an Asian dust outbreak over the United States. J Appl Meteorol, 42(2): 266–278
CrossRef
Google scholar
|
[9] |
Augustine J A, Hodges G B, Cornwall C R, Michalsky J J, Medina C I (2005). An update on SURFRAD -The GCOS Surface Radiation budget network for the continental United States. J Atmos Ocean Technol, 22(10): 1460–1472
CrossRef
Google scholar
|
[10] |
Bais A F (1997). Spectrometers: operational errors and uncertainties, Solar Ultraviolet Radiation Modeling, Measurements and Effects. In: Zerefos C S, Bais A F, eds .Vol. 52 of NATO ASI Series I, Global Environmental Change. Berlin: Springer-Verlag, 163–173
|
[11] |
Bais A F, Kazadzis S, Balis D, Zerefos C S, Blumthaler M (1998). Correcting global solar ultraviolet spectra recorded by a brewer spectroradiometer for its angular response error. Appl Opt, 37(27): 6339–6344
|
[12] |
Bigelow D S, Slusser J R, Beaubien A F, Gibson J H (1998). The USDA ultraviolet radiation monitoring program. Bull Am Meteorol Soc, 79(4): 601–615
CrossRef
Google scholar
|
[13] |
Blumthaler M, Bais A F (1996). Cosine corrections of global sky measurements, In: Kjeldstad B, Johnsen B, Koskela T, eds. The Nordic Intercomparison of Ultraviolet and Total Ozone Instruments at Izana October 1996. Helsinki: Finnish Meteorological Institute, 161–172
|
[14] |
Bodhaine B A, Wood N B, Dutton E G, Slusser J R (1999). On Rayleigh optical depth calculations. J Atmos Oceanic Technol., 16: 1854–1861
|
[15] |
Booth C R, Mestechkina T, Morrow J H (1994). Errors in the reporting of solar spectral irradiance using moderate bandwidth radiometers: an experimental investigation. In: Ocean Optics XII, Proc SPIE Int Soc Opt Eng, 2258, 654–663
|
[16] |
Bruegge C J, Conel J E, Green R O, Margolis J S, Holm R G, Toon G (1992). Water vapor column abundance retrievals during FTFE. J Geophys Res, 97(D17): 18759–18768
CrossRef
Google scholar
|
[17] |
Bucholtz A (1995). Rayleigh-scattering calculations for the terrestrial atmosphere. Appl Opt, 34(15): 6339–6344
|
[18] |
Cachorro V E, Utrillas P, Vergaz R, Duran P, de Frutos A M, Martinez-Lozano J A (1998). Determination of the atmospheric water-vapor content in the 940-nm absorption band by use of moderate spectral-resolution measurements of direct solar irradiance. Appl Opt, 37(21): 4678–4689
|
[19] |
Cahalan R F (1994). Bounded cascade clouds: Albedo and effective thickness. Nonlinear Process Geophys, 1(2/3): 156–167
CrossRef
Google scholar
|
[20] |
Cairns B, Lacis A A, Carlson B E (2000). Absorption within inhomogeneous clouds and its parameterization in general circulation models. J Atmos Sci, 57(5): 700–714
CrossRef
Google scholar
|
[21] |
Caldwell M M, Camp C W, Warner C W, Flint S D (1986). Action spectra and their role in assessing biological consequences of solar UV-B radiation change. In: Worrest R C, Caldwell M M, eds . Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life. Berlin: Springer-Verlag, 87–111
|
[22] |
Charlson R J, Schwartz S E, Hales J M, Cess R D, Coakley J A Jr, Hansen J E, Hofmann D J (1992). Climate forcing by anthropogenic aerosols. Science. New Series, 255(5043): 423–430
|
[23] |
Chen M, Davis J, Tang H, Gao Z, Gao W (2012). A multi-channel calibration method for multi-filter rotating shadow-band radiometer. Proc SPIE 8513. Remote Sensing and Modeling of Ecosystems for Sustainability, IX: 851305
CrossRef
Google scholar
|
[24] |
Chow J C, Watson J G, Fujita E M, Lu Z, Lawson D R (1994). Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California air quality study. Atmospheric Environment, 28(12): 2061–2080
|
[25] |
di Sarra A, Fua D, Cacciani M, Di Iorio T, Disterhoft P, Meloni D, Monteleone F, Piacentino S, Sferlazzo D (2008). Determination of ultraviolet cosine-corrected irradiances and aerosol optical thickness by combined measurements with a Brewer spectrophotometer and a multifilter rotating shadowband radiometer. Appl Opt, 47(33): 6142–6150
CrossRef
Pubmed
Google scholar
|
[26] |
Feister U, Grewe R, Gericke K (1997). A method for correction of cosine errors in measurements of spectral UV irradiance. Sol Energy, 60(6): 313–332
CrossRef
Google scholar
|
[27] |
Forgan B W (1986). Sun photometer calibration by the ratio-Langley technique. In: Forgan B W, Fraser P J, eds. Baseline Atmospheric Program, Bureau of Meteorology, Melbourne, Australia, 22–26
|
[28] |
Forgan B W (1987). A technique for calibrating sunphotometers using solar aureole measurements. In: Forgan B W, Ayers G P, eds. Baseline, Bureau of Meteorology, Melbourne, Australia, 1989, 15–20
|
[29] |
Forgan B W (1988). Bias in solar constant determination by the Langley method due to structured aerosol: Comment. Appl Opt, 27(12): 2546–2548
|
[30] |
Forgan B W (1994). General method for calibrating Sun photometers. Appl Opt, 33(21): 4841–4850
CrossRef
Pubmed
Google scholar
|
[31] |
Fowle F E (1912). The spectroscopic determination of aqueous vapor. Astrophys J, 35(3): 149–162
CrossRef
Google scholar
|
[32] |
Fowle F E (1915). The transparency of aqueous vapor. Astrophys J, 42(5): 394–411
CrossRef
Google scholar
|
[33] |
Halthore R N, Eck T F, Holben B N, Markham B L (1997). Sun photometric measurements of atmospheric water vapor column abundance in the 940-nm band. J Geophys Res, 102(D4): 4343–4352
CrossRef
Google scholar
|
[34] |
Hansen J E, Travis L D (1974). Light scattering in planetary atmospheres. Space Sci Rev, 16(4): 527–610
CrossRef
Google scholar
|
[35] |
Harrison L, Michalsky J (1994). Objective algorithms for the retrieval of optical depths from ground-based measurements. Appl Opt, 33(22): 5126–5132
|
[36] |
Harrison L, Michalsky J, Berndt J (1994b). Automated multifilter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements. Appl Opt, 33(22): 5118–5125
|
[37] |
Hickey J R (1970). Laboratory methods of experimental radiometry including data analysis., Adv Geophys. 14: 227–267
CrossRef
Google scholar
|
[38] |
Hodges G B, Michalsky J J (2011). Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook with Subsections for the Following Derivative Instruments: Multifilter Radiometer (MFR) Normal Incidence Multifilter Radiometer (NIMFR), U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, DOE/SC-ARM/TR-059
|
[39] |
Holben B N, Eck T F, Slutsker I, Tanré D, Buis J P, Setzer A, Vermote E, Reagan J A, Kaufman Y J, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998). AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens Environ, 66(1): 1–16
CrossRef
Google scholar
|
[40] |
Ingold T, Schmid B, Matzler C, Demoulin P, Kampfer N (2000). Modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.72, 0.82, and 0.94 mm absorption bands. J Geophys Res, 105(D19): 24327–24343
CrossRef
Google scholar
|
[41] |
Janson G T, Slusser J R (2003). Long-term stability of UV multifilter rotating shadowband radiometers. Ultraviolet ground- and space-based measurements. Models and Effects Iii Book Series: Proceedings of the Society of Photo-Optical Instrumentation Engineers, 5156: 94–100 (SPIE)
CrossRef
Google scholar
|
[42] |
Kakani V G, Reddy K R, Zhao D, Mohammed A R (2003b). Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. Ann Bot (Lond), 91(7): 817–826
CrossRef
Pubmed
Google scholar
|
[43] |
Kakani V G, Reddy K R, Zhao D, Sailaja K (2003a). Field crop responses to ultraviolet-B radiation: a review. Agric Meteorol, 120(1-4): 191–218
CrossRef
Google scholar
|
[44] |
Kaskaoutis D G, Kambezidis H D, Kharol S K, Badarinath K V S (2008). The diffuse-to-global spectral irradiance ratio as a cloud-screening technique for radiometric data. J Atmos Solar-Terrestrial Phys, 70(13): 1597–1606
|
[45] |
Kassianov E, Barnard J C, Berg L K, Flynn C, Long C N (2011). Sky cover from MFRSR observations. Atmos Meas Tech, 4: 1463–1470,
CrossRef
Google scholar
|
[46] |
Kasten F, Young A T (1989). Revised optical air mass tables and approximation formula. Appl Opt, 28(22): 4735–4738
CrossRef
Pubmed
Google scholar
|
[47] |
Kiedron P, Berndt J, Michalsky J, Harrison L (2003). Column water vapor from diffuse irradiance. Geophys Res Lett, 30(11): 1565-1568
CrossRef
Google scholar
|
[48] |
Kiedron P, Michalsky J, Schmid B, Slater D, Berndt J, Harrison L, Racette P, Westwater E, Han Y (2001). A robust retrieval of water vapor column in dry Arctic conditions using the rotating shadowband spectroradiometer. J Geophys Res, 106(D20): 24007–24016
CrossRef
Google scholar
|
[49] |
Kiedron P W, Michalsky J J, Berndt J L, Harrison L C (1999). Comparison of spectral irradiance standards used to calibrate shortwave radiometers and spectroradiometers. Appl Opt, 38(12): 2432–2439
CrossRef
Pubmed
Google scholar
|
[50] |
Komhyr W D (1980). Operations Handbook-Ozone Observations with a Dobson Spectrophotometer, WMO Global Ozone Res. Monit. Proj. Report 6, World Meteorol. Organ. Geneva
|
[51] |
Krotkov N, Bhartia P K, Herman J, Slusser J, Labow G, Scott G, Janson G, Eck T F, Holben B (2005). Aerosol ultraviolet absorption experiment (2002 to 2004), part 1: ultraviolet multifilter rotating shadowband radiometer calibration and intercomparison with CIMEL sunphotometers. Opt Eng, 44(4): 041004
CrossRef
Google scholar
|
[52] |
Lee K H, Li Z, Cribb M C, Liu J, Wang L, Zheng Y, Xia X, Chen H, Li B (2010). Aerosol optical depth measurements in eastern China and a new calibration method. J Geophys Res, 115: D00K11
CrossRef
Google scholar
|
[53] |
Leontieva E, Stamnes K(1996). Remote sensing of cloud optical properties from ground-based measurements of transmittance: a feasibility study. J Appl Meteor, 35(11): 2011–2022
|
[54] |
Lighty J S, Veranth J M, Sarofim A F (2000). Combustion aerosols: factors governing their size and composition and implications to human health. J Air Waste Manag Assoc, 50(9): 1565–1618
CrossRef
Pubmed
Google scholar
|
[55] |
Livingston J, Schmid B, Redemann J, Russell P B, Ramirez S A, Eilers J, Gore W, Howard S, Pommier J, Fetzer E J, Seemann S W, Borbas E, Wolfe D E, Thompson A M (2007). Comparison of water vapor measurements by airborne Sun photometer and near-coincident in situ and satellite sensors during INTEX/ITCT 2004. J Geophys Res, 112(D12): D12S16
CrossRef
Google scholar
|
[56] |
Long C N, Ackerman T P (2000). Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. J Geophys Res, 105(D12): 15609–15626
CrossRef
Google scholar
|
[57] |
Madronich S(1993). UV radiation in the natural and perturbed atmosphere. In: Tevini M, ed., UV-B Radiation and Ozone Depletion: Effects on Humans, Animals, Plants, Microorganisms, and Materials. Boca Raton: Lewis Publishers
|
[58] |
Mazzola M, Lanconelli C, Lupi A, Busetto M, Vitale V, Tomasi C (2010). Columnar aerosol optical properties in the Po Valley, Italy, from MFRSR data. J Geophys Res, 115(D17): D17206
CrossRef
Google scholar
|
[59] |
Michalsky J J, Harrison L C, Berkheiser W E III (1995). Cosine response characteristics of some radiometric and photometric sensors. Sol Energy, 54(6): 397–402
CrossRef
Google scholar
|
[60] |
Michalsky J J, Liljegren J C, Harrison L C (1995b). A comparison of Sun photometer derivations of total column water vapor and ozone to standard measures of same at the Southern Great Plains Atmospheric Radiation Measurement site. J Geophys Res, 100(D12): 25,995–26,003
CrossRef
Google scholar
|
[61] |
Michalsky J J, Min Q, Kiedron P W, Slater D W, Barnard J C (2001b). A differential technique to retrieve column water vapor using sun radiometry. J Geophys Res, 106(D15): 17,433–17,442
CrossRef
Google scholar
|
[62] |
Michalsky J J, Schlemmer F A, Berkheiser W E, Berndt J L, Harrison L C, Laulainen N S, Larson N R, Barnard J C (2001a). Multi-year measurements of aerosol optical depth in the Atmospheric Radiation Measurement and Quantitative Links programs. J Geophys Res, 106(D11): 12099–12107
CrossRef
Google scholar
|
[63] |
Molling C C, Heidinger A K, Straka W C III and Wu X (2010). Calibrations for AVHRR channels 1 and 2: review and path towards consensus. International Journal of Remote Sensing, 31(24): 6519–6540
|
[64] |
Monteith J L, Unsworth M H (2008), Principles of environmental physics, 3rd ed. Oxford: Academic
|
[65] |
Plana-Fattori A, Dubuisson P, Fomin B A, de Paula Corrêa M (2004). Estimating the atmospheric water vapor content from multi-filter rotating shadow-band radiometry at Sao Paulo, Brazil. Atmos Res, 71(3): 171–192
CrossRef
Google scholar
|
[66] |
Plana-Fattori A, Legrand M, Tanre D, Devaux C, Vermeulen A, Dubuisson P (1998). Estimating the atmospheric water vapor content from Sun photometer measurements. J Appl Meteorol, 37(8): 790–804
CrossRef
Google scholar
|
[67] |
Ramanathan V, Cess R D, Harrison E F, Minnis P, Barkstrom B R, Ahmad E, Hartmann D (1989). Cloud-radiative forcing and climate: results from the Earth radiation budget experiment. Science, 243(4887): 57–63
CrossRef
Pubmed
Google scholar
|
[68] |
Ramanathan V, Crutzen P J, Kiehl J T, Rosenfeld D (2001). Aerosols, climate, and the hydrological cycle. Science, 294(5549): 2119–2124
CrossRef
Pubmed
Google scholar
|
[69] |
Reagan J, Thome K, Herman B, Stone R, Deluisi J, Snider J (1995). A comparison of columnar water-vapor retrievals obtained with near-IR solar radiometer and microwave radiometer measurements. J Appl Meteorol, 34(6): 1384–1391
|
[70] |
Reagan J, Pilewskie P, Herman B, Ben-David A (1987b). Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations. IEEE Trans Geosci Rem Sens, GE-25(6): 647–653
CrossRef
Google scholar
|
[71] |
Reagan J A, Thome K, Herman B, Gall R (1987a). Water vapor measurements in the 0.94 micron absorption band: Calibration, measurements, and data applications. In: Proceedings, International Geoscience and Remote Sensing Symposium, ’87 Symposium, Ann Arbor, Mich. IEEE, 63–67
|
[72] |
Schmid B, Hegg D A, Wang J, Bates D, Redemann J, Russell P B, Livingston J M, Jonsson H H, Welton E J, Seinfeld J H, Flagan R C, Covert D S, Dubovik O, Jefferson A (2003). Column closure studies of lower tropospheric aerosol and water vapor during ACE-Asia using airborne Sun photometer and airborne in situ and ship-based lidar measurements. J Geophys Res, 108(D23): 8656-8677
CrossRef
Google scholar
|
[73] |
Schmid B, Michalsky J J, Slater D W, Barnard J C, Halthore R N, Liljegren J C, Holben B N, Eck T F, Livingston J M, Russell P B, Ingold T, Slutsker I (2001). Comparison of columnar water-vapor measurements from solar transmittance methods. Appl Opt, 40(12): 1886–1896
|
[74] |
Schmid B, Spyak P R, Biggar S F, Wehrli C, Sekler J, Ingold T, Matzler C, Kampfer N (1998). Evaluation of the applicability of solar and lamp radiometric calibrations of a precision Sun photometer operating between 300 and 1025 nm. Appl Opt, 37(18): 3923–3941
|
[75] |
Schmid B, Thome K J, Demoulin P, Peter R, Matzler C, Sekler J (1996). Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94 mm region. J Geophys Res, 101(9): 345–349, 358
|
[76] |
Schmid B, Wehrli C (1995). Comparison of Sun photometer calibration by use of the Langley technique and the standard lamp. Appl Opt, 34(21): 4500–4512, 512
CrossRef
Pubmed
Google scholar
|
[77] |
Seckmeyer G, Bernhard G (1993). Cosine error correction of spectral UV irradiances. In: Stamnes K H, ed. Atmospheric Radiation, Proc. SPIE, 2049: 140–151
|
[78] |
Shaw G E (1976). Error analysis of multi-wavelength sun photometry. Pure Appl Geophys, 114(1): 1–14
CrossRef
Google scholar
|
[79] |
Shaw G E (1982). Solar spectral irradiance and atmospheric transmission at Mauna Loa Observatory. Appl Opt, 21(11): 2007–2011
|
[80] |
Shiobara M, Spinhirne J D, Uchiyama A, Asano S (1996). Optical depth measurements of aerosol, cloud, and water vapor using Sun photometers during FIRE Cirrus IFO II. J Appl Meteorol, 35(1): 36–46
CrossRef
Google scholar
|
[81] |
Slusser J, Gibson J, Bigelow D, Kolinski D, Disterhoft P, Lantz K, Beaubien A (2000). Langley method of calibrating UV filter radiometers. J Geophys Res, 105(D4): 4841-4849
CrossRef
Google scholar
|
[82] |
Smirnov A, Holben B N, Eck T F, Dubovik O, Slutsker I (2000). Cloud screening and quality control algorithms for the AERONET database. Remote Sens Environ, 73(3): 337–349
CrossRef
Google scholar
|
[83] |
Teramura A H, Sullivan J H, Ziska L H (1990). Interaction of Elevated Ultraviolet-B Radiation and CO(2) on Productivity and Photosynthetic Characteristics in Wheat, Rice, and Soybean. Plant Physiol, 94(2): 470–475
CrossRef
Pubmed
Google scholar
|
[84] |
Thomason L W, Herman B M, Reagan J A (1983). The effect of atmospheric attenuators with structured vertical distributions on air mass determinations and Langley plot analysis. J Atmos Sci, 40(7): 1851–1854
|
[85] |
Thome K J, Herman B, Reagan J (1992). Determination of precipitable water from solar transmission. J Appl Meteorol, 31(2): 157–165
CrossRef
Google scholar
|
[86] |
Thome K J, Smith M W, Palmer J M, Reagan J A (1994). Three-channel solar radiometer for the determination of atmospheric columnar water vapor. Appl Opt, 33(24): 5811–5819
CrossRef
Pubmed
Google scholar
|
[87] |
Thuillier G, Hers M, Simon P C, Labs D, Mandel H, Gillotay D (1998). Observation of the solar spectral irradiance from 200 to 870 nm during the ATLAS 1 and ATLAS 2 mission by the SOLSPEC spectrometer. Metrologia, 35(4): 689–695
CrossRef
Google scholar
|
[88] |
Vanden Berghen F, Bersini H (2005). CONDOR, a new parallel, constrained extension of Powell’s UOBYQA algorithm: experimental results and comparison with the DFO algorithm. Journal of Computational and Applied Mathematics, 181(1): 157–175
CrossRef
Google scholar
|
[89] |
Wielicki B A, Cess R D, King M D, Randall D A, Harrison E F (1995). Mission to Planet Earth: role of clouds and radiation in climate. Bull Am Meteorol Soc, 76: 2125–2153
|
[90] |
Willson R C, Mordvinov A V (2003). Secular total solar irradiance trend during solar cycles 21-23. Geophys Res Lett, 30(5): 1199-1202
CrossRef
Google scholar
|
[91] |
Wilson S R, Forgan B W (1995). In situ calibration technique for UV spectral radiometers. Appl Opt, 34: 5475–5484
|
[92] |
Yin B, Min Q, Duan M, Bartholomew M J, Vogelmann A M, Turner D D (2011). Retrievals of cloud optical depth and effective radius from Thin-Cloud Rotating Shadowband Radiometer measurements. J Geophys Res, 116(D23): D23208
CrossRef
Google scholar
|
/
〈 | 〉 |