PDF
(258KB)
Abstract
The continuous, over two-decade data record from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) is ideal for climate research which requires timely and accurate information of important atmospheric components such as gases, aerosols, and clouds. Except for parameters derived from MFRSR measurement ratios, which are not impacted by calibration error, most applications require accurate calibration factor(s), angular correction, and spectral response function(s) from calibration. Although a laboratory lamp (or reference) calibration can provide all the information needed to convert the instrument readings to actual radiation, in situ calibration methods are implemented routinely (daily) to fill the gaps between lamp calibrations. In this paper, the basic structure and the data collection and pretreatment of the MFRSR are described. The laboratory lamp calibration and its limitations are summarized. The cloud screening algorithms for MFRSR data are presented. The in situ calibration methods, the standard Langley method and its variants, the ratio-Langley method, the general method, Alexandrov’s comprehensive method, and Chen’s multi-channel method, are outlined. The reason that all these methods do not fit for all situations is that they assume some properties, such as aerosol optical depth (AOD), total optical depth (TOD), precipitable water vapor (PWV), effective size of aerosol particles, or angstrom coefficient, are invariant over time. These properties are not universal and some of them rarely happen. In practice, daily calibration factors derived from these methods should be smoothed to restrain error.
Keywords
Multi-Filter Rotating Shadowband Radiometer (MFRSR)
/
calibration
/
review
Cite this article
Download citation ▾
Maosi CHEN, John DAVIS, Hongzhao TANG, Carolyn OWNBY, Wei GAO.
The calibration methods for Multi-Filter Rotating Shadowband Radiometer: a review.
Front. Earth Sci., 2013, 7(3): 257-270 DOI:10.1007/s11707-013-0368-9
| [1] |
Ackerman T P, Stokes G (2003). The atmospheric radiation measurement program. Phys Today, 56(1): 38–45
|
| [2] |
Alexandrov, D, Kiedron P, Michalsky J J, Godges G, Flynn C J, Lacis A A (2007). Optical depth measurements by shadow-band radiometers and their uncertainties. Appl Opt, 46(33): 8027–8038
|
| [3] |
Alexandrov M D, Lacis A A, Carlson B E, Cairns B (2002). Remote sensing of atmospheric aerosols and trace gases by means of multi-filter rotating shadowband radiometer. part I: retrieval algorithm. J Atmos Sci, 59(3): 524–543
|
| [4] |
Alexandrov M D, Lacis A A, Carlson B E, Cairns B (2002b). Remote sensing of atmospheric aerosols and trace gases by means of multi-filter rotating shadowband radiometer. part II: climatological applications. J Atmos Sci, 59(3): 544–566
|
| [5] |
Alexandrov M D, Lacis A A, Carlson B E, Cairns B (2008). Characterization of atmospheric aerosols using MFRSR measurements. J Geophys Res, 113(D8): D08204
|
| [6] |
Alexandrov M D, Marshak A, Cairns B, Lacis A A, Carlson B E (2004). Automated cloud screening algorithm for MFRSR data. Geophys Res Lett, 31(4): L04118
|
| [7] |
Alexandrov M D, Schmid B, Turner D D, Cairns B, Oinas V, Lacis A A, Gutman S I, Westwater E R, Smirnov A, Eilers J (2009). Columnar water vapor retrievals from multifilter rotating shadowband radiometer data. J Geophys Res, 114(D2): D02306
|
| [8] |
Augustine J A, Cornwall C R, Hodges G B, Long C N, Medina C I, DeLuisi J J (2003). An automated method of MFRSR calibration for aerosol optical depth analysis with application to an Asian dust outbreak over the United States. J Appl Meteorol, 42(2): 266–278
|
| [9] |
Augustine J A, Hodges G B, Cornwall C R, Michalsky J J, Medina C I (2005). An update on SURFRAD -The GCOS Surface Radiation budget network for the continental United States. J Atmos Ocean Technol, 22(10): 1460–1472
|
| [10] |
Bais A F (1997). Spectrometers: operational errors and uncertainties, Solar Ultraviolet Radiation Modeling, Measurements and Effects. In: Zerefos C S, Bais A F, eds .Vol. 52 of NATO ASI Series I, Global Environmental Change. Berlin: Springer-Verlag, 163–173
|
| [11] |
Bais A F, Kazadzis S, Balis D, Zerefos C S, Blumthaler M (1998). Correcting global solar ultraviolet spectra recorded by a brewer spectroradiometer for its angular response error. Appl Opt, 37(27): 6339–6344
|
| [12] |
Bigelow D S, Slusser J R, Beaubien A F, Gibson J H (1998). The USDA ultraviolet radiation monitoring program. Bull Am Meteorol Soc, 79(4): 601–615
|
| [13] |
Blumthaler M, Bais A F (1996). Cosine corrections of global sky measurements, In: Kjeldstad B, Johnsen B, Koskela T, eds. The Nordic Intercomparison of Ultraviolet and Total Ozone Instruments at Izana October 1996. Helsinki: Finnish Meteorological Institute, 161–172
|
| [14] |
Bodhaine B A, Wood N B, Dutton E G, Slusser J R (1999). On Rayleigh optical depth calculations. J Atmos Oceanic Technol., 16: 1854–1861
|
| [15] |
Booth C R, Mestechkina T, Morrow J H (1994). Errors in the reporting of solar spectral irradiance using moderate bandwidth radiometers: an experimental investigation. In: Ocean Optics XII, Proc SPIE Int Soc Opt Eng, 2258, 654–663
|
| [16] |
Bruegge C J, Conel J E, Green R O, Margolis J S, Holm R G, Toon G (1992). Water vapor column abundance retrievals during FTFE. J Geophys Res, 97(D17): 18759–18768
|
| [17] |
Bucholtz A (1995). Rayleigh-scattering calculations for the terrestrial atmosphere. Appl Opt, 34(15): 6339–6344
|
| [18] |
Cachorro V E, Utrillas P, Vergaz R, Duran P, de Frutos A M, Martinez-Lozano J A (1998). Determination of the atmospheric water-vapor content in the 940-nm absorption band by use of moderate spectral-resolution measurements of direct solar irradiance. Appl Opt, 37(21): 4678–4689
|
| [19] |
Cahalan R F (1994). Bounded cascade clouds: Albedo and effective thickness. Nonlinear Process Geophys, 1(2/3): 156–167
|
| [20] |
Cairns B, Lacis A A, Carlson B E (2000). Absorption within inhomogeneous clouds and its parameterization in general circulation models. J Atmos Sci, 57(5): 700–714
|
| [21] |
Caldwell M M, Camp C W, Warner C W, Flint S D (1986). Action spectra and their role in assessing biological consequences of solar UV-B radiation change. In: Worrest R C, Caldwell M M, eds . Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life. Berlin: Springer-Verlag, 87–111
|
| [22] |
Charlson R J, Schwartz S E, Hales J M, Cess R D, Coakley J A Jr, Hansen J E, Hofmann D J (1992). Climate forcing by anthropogenic aerosols. Science. New Series, 255(5043): 423–430
|
| [23] |
Chen M, Davis J, Tang H, Gao Z, Gao W (2012). A multi-channel calibration method for multi-filter rotating shadow-band radiometer. Proc SPIE 8513. Remote Sensing and Modeling of Ecosystems for Sustainability, IX: 851305
|
| [24] |
Chow J C, Watson J G, Fujita E M, Lu Z, Lawson D R (1994). Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California air quality study. Atmospheric Environment, 28(12): 2061–2080
|
| [25] |
di Sarra A, Fua D, Cacciani M, Di Iorio T, Disterhoft P, Meloni D, Monteleone F, Piacentino S, Sferlazzo D (2008). Determination of ultraviolet cosine-corrected irradiances and aerosol optical thickness by combined measurements with a Brewer spectrophotometer and a multifilter rotating shadowband radiometer. Appl Opt, 47(33): 6142–6150
|
| [26] |
Feister U, Grewe R, Gericke K (1997). A method for correction of cosine errors in measurements of spectral UV irradiance. Sol Energy, 60(6): 313–332
|
| [27] |
Forgan B W (1986). Sun photometer calibration by the ratio-Langley technique. In: Forgan B W, Fraser P J, eds. Baseline Atmospheric Program, Bureau of Meteorology, Melbourne, Australia, 22–26
|
| [28] |
Forgan B W (1987). A technique for calibrating sunphotometers using solar aureole measurements. In: Forgan B W, Ayers G P, eds. Baseline, Bureau of Meteorology, Melbourne, Australia, 1989, 15–20
|
| [29] |
Forgan B W (1988). Bias in solar constant determination by the Langley method due to structured aerosol: Comment. Appl Opt, 27(12): 2546–2548
|
| [30] |
Forgan B W (1994). General method for calibrating Sun photometers. Appl Opt, 33(21): 4841–4850
|
| [31] |
Fowle F E (1912). The spectroscopic determination of aqueous vapor. Astrophys J, 35(3): 149–162
|
| [32] |
Fowle F E (1915). The transparency of aqueous vapor. Astrophys J, 42(5): 394–411
|
| [33] |
Halthore R N, Eck T F, Holben B N, Markham B L (1997). Sun photometric measurements of atmospheric water vapor column abundance in the 940-nm band. J Geophys Res, 102(D4): 4343–4352
|
| [34] |
Hansen J E, Travis L D (1974). Light scattering in planetary atmospheres. Space Sci Rev, 16(4): 527–610
|
| [35] |
Harrison L, Michalsky J (1994). Objective algorithms for the retrieval of optical depths from ground-based measurements. Appl Opt, 33(22): 5126–5132
|
| [36] |
Harrison L, Michalsky J, Berndt J (1994b). Automated multifilter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements. Appl Opt, 33(22): 5118–5125
|
| [37] |
Hickey J R (1970). Laboratory methods of experimental radiometry including data analysis., Adv Geophys. 14: 227–267
|
| [38] |
Hodges G B, Michalsky J J (2011). Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook with Subsections for the Following Derivative Instruments: Multifilter Radiometer (MFR) Normal Incidence Multifilter Radiometer (NIMFR), U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, DOE/SC-ARM/TR-059
|
| [39] |
Holben B N, Eck T F, Slutsker I, Tanré D, Buis J P, Setzer A, Vermote E, Reagan J A, Kaufman Y J, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998). AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens Environ, 66(1): 1–16
|
| [40] |
Ingold T, Schmid B, Matzler C, Demoulin P, Kampfer N (2000). Modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.72, 0.82, and 0.94 mm absorption bands. J Geophys Res, 105(D19): 24327–24343
|
| [41] |
Janson G T, Slusser J R (2003). Long-term stability of UV multifilter rotating shadowband radiometers. Ultraviolet ground- and space-based measurements. Models and Effects Iii Book Series: Proceedings of the Society of Photo-Optical Instrumentation Engineers, 5156: 94–100 (SPIE)
|
| [42] |
Kakani V G, Reddy K R, Zhao D, Mohammed A R (2003b). Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. Ann Bot (Lond), 91(7): 817–826
|
| [43] |
Kakani V G, Reddy K R, Zhao D, Sailaja K (2003a). Field crop responses to ultraviolet-B radiation: a review. Agric Meteorol, 120(1-4): 191–218
|
| [44] |
Kaskaoutis D G, Kambezidis H D, Kharol S K, Badarinath K V S (2008). The diffuse-to-global spectral irradiance ratio as a cloud-screening technique for radiometric data. J Atmos Solar-Terrestrial Phys, 70(13): 1597–1606
|
| [45] |
Kassianov E, Barnard J C, Berg L K, Flynn C, Long C N (2011). Sky cover from MFRSR observations. Atmos Meas Tech, 4: 1463–1470,
|
| [46] |
Kasten F, Young A T (1989). Revised optical air mass tables and approximation formula. Appl Opt, 28(22): 4735–4738
|
| [47] |
Kiedron P, Berndt J, Michalsky J, Harrison L (2003). Column water vapor from diffuse irradiance. Geophys Res Lett, 30(11): 1565-1568
|
| [48] |
Kiedron P, Michalsky J, Schmid B, Slater D, Berndt J, Harrison L, Racette P, Westwater E, Han Y (2001). A robust retrieval of water vapor column in dry Arctic conditions using the rotating shadowband spectroradiometer. J Geophys Res, 106(D20): 24007–24016
|
| [49] |
Kiedron P W, Michalsky J J, Berndt J L, Harrison L C (1999). Comparison of spectral irradiance standards used to calibrate shortwave radiometers and spectroradiometers. Appl Opt, 38(12): 2432–2439
|
| [50] |
Komhyr W D (1980). Operations Handbook-Ozone Observations with a Dobson Spectrophotometer, WMO Global Ozone Res. Monit. Proj. Report 6, World Meteorol. Organ. Geneva
|
| [51] |
Krotkov N, Bhartia P K, Herman J, Slusser J, Labow G, Scott G, Janson G, Eck T F, Holben B (2005). Aerosol ultraviolet absorption experiment (2002 to 2004), part 1: ultraviolet multifilter rotating shadowband radiometer calibration and intercomparison with CIMEL sunphotometers. Opt Eng, 44(4): 041004
|
| [52] |
Lee K H, Li Z, Cribb M C, Liu J, Wang L, Zheng Y, Xia X, Chen H, Li B (2010). Aerosol optical depth measurements in eastern China and a new calibration method. J Geophys Res, 115: D00K11
|
| [53] |
Leontieva E, Stamnes K(1996). Remote sensing of cloud optical properties from ground-based measurements of transmittance: a feasibility study. J Appl Meteor, 35(11): 2011–2022
|
| [54] |
Lighty J S, Veranth J M, Sarofim A F (2000). Combustion aerosols: factors governing their size and composition and implications to human health. J Air Waste Manag Assoc, 50(9): 1565–1618
|
| [55] |
Livingston J, Schmid B, Redemann J, Russell P B, Ramirez S A, Eilers J, Gore W, Howard S, Pommier J, Fetzer E J, Seemann S W, Borbas E, Wolfe D E, Thompson A M (2007). Comparison of water vapor measurements by airborne Sun photometer and near-coincident in situ and satellite sensors during INTEX/ITCT 2004. J Geophys Res, 112(D12): D12S16
|
| [56] |
Long C N, Ackerman T P (2000). Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. J Geophys Res, 105(D12): 15609–15626
|
| [57] |
Madronich S(1993). UV radiation in the natural and perturbed atmosphere. In: Tevini M, ed., UV-B Radiation and Ozone Depletion: Effects on Humans, Animals, Plants, Microorganisms, and Materials. Boca Raton: Lewis Publishers
|
| [58] |
Mazzola M, Lanconelli C, Lupi A, Busetto M, Vitale V, Tomasi C (2010). Columnar aerosol optical properties in the Po Valley, Italy, from MFRSR data. J Geophys Res, 115(D17): D17206
|
| [59] |
Michalsky J J, Harrison L C, Berkheiser W E III (1995). Cosine response characteristics of some radiometric and photometric sensors. Sol Energy, 54(6): 397–402
|
| [60] |
Michalsky J J, Liljegren J C, Harrison L C (1995b). A comparison of Sun photometer derivations of total column water vapor and ozone to standard measures of same at the Southern Great Plains Atmospheric Radiation Measurement site. J Geophys Res, 100(D12): 25,995–26,003
|
| [61] |
Michalsky J J, Min Q, Kiedron P W, Slater D W, Barnard J C (2001b). A differential technique to retrieve column water vapor using sun radiometry. J Geophys Res, 106(D15): 17,433–17,442
|
| [62] |
Michalsky J J, Schlemmer F A, Berkheiser W E, Berndt J L, Harrison L C, Laulainen N S, Larson N R, Barnard J C (2001a). Multi-year measurements of aerosol optical depth in the Atmospheric Radiation Measurement and Quantitative Links programs. J Geophys Res, 106(D11): 12099–12107
|
| [63] |
Molling C C, Heidinger A K, Straka W C III and Wu X (2010). Calibrations for AVHRR channels 1 and 2: review and path towards consensus. International Journal of Remote Sensing, 31(24): 6519–6540
|
| [64] |
Monteith J L, Unsworth M H (2008), Principles of environmental physics, 3rd ed. Oxford: Academic
|
| [65] |
Plana-Fattori A, Dubuisson P, Fomin B A, de Paula Corrêa M (2004). Estimating the atmospheric water vapor content from multi-filter rotating shadow-band radiometry at Sao Paulo, Brazil. Atmos Res, 71(3): 171–192
|
| [66] |
Plana-Fattori A, Legrand M, Tanre D, Devaux C, Vermeulen A, Dubuisson P (1998). Estimating the atmospheric water vapor content from Sun photometer measurements. J Appl Meteorol, 37(8): 790–804
|
| [67] |
Ramanathan V, Cess R D, Harrison E F, Minnis P, Barkstrom B R, Ahmad E, Hartmann D (1989). Cloud-radiative forcing and climate: results from the Earth radiation budget experiment. Science, 243(4887): 57–63
|
| [68] |
Ramanathan V, Crutzen P J, Kiehl J T, Rosenfeld D (2001). Aerosols, climate, and the hydrological cycle. Science, 294(5549): 2119–2124
|
| [69] |
Reagan J, Thome K, Herman B, Stone R, Deluisi J, Snider J (1995). A comparison of columnar water-vapor retrievals obtained with near-IR solar radiometer and microwave radiometer measurements. J Appl Meteorol, 34(6): 1384–1391
|
| [70] |
Reagan J, Pilewskie P, Herman B, Ben-David A (1987b). Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations. IEEE Trans Geosci Rem Sens, GE-25(6): 647–653
|
| [71] |
Reagan J A, Thome K, Herman B, Gall R (1987a). Water vapor measurements in the 0.94 micron absorption band: Calibration, measurements, and data applications. In: Proceedings, International Geoscience and Remote Sensing Symposium, ’87 Symposium, Ann Arbor, Mich. IEEE, 63–67
|
| [72] |
Schmid B, Hegg D A, Wang J, Bates D, Redemann J, Russell P B, Livingston J M, Jonsson H H, Welton E J, Seinfeld J H, Flagan R C, Covert D S, Dubovik O, Jefferson A (2003). Column closure studies of lower tropospheric aerosol and water vapor during ACE-Asia using airborne Sun photometer and airborne in situ and ship-based lidar measurements. J Geophys Res, 108(D23): 8656-8677
|
| [73] |
Schmid B, Michalsky J J, Slater D W, Barnard J C, Halthore R N, Liljegren J C, Holben B N, Eck T F, Livingston J M, Russell P B, Ingold T, Slutsker I (2001). Comparison of columnar water-vapor measurements from solar transmittance methods. Appl Opt, 40(12): 1886–1896
|
| [74] |
Schmid B, Spyak P R, Biggar S F, Wehrli C, Sekler J, Ingold T, Matzler C, Kampfer N (1998). Evaluation of the applicability of solar and lamp radiometric calibrations of a precision Sun photometer operating between 300 and 1025 nm. Appl Opt, 37(18): 3923–3941
|
| [75] |
Schmid B, Thome K J, Demoulin P, Peter R, Matzler C, Sekler J (1996). Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94 mm region. J Geophys Res, 101(9): 345–349, 358
|
| [76] |
Schmid B, Wehrli C (1995). Comparison of Sun photometer calibration by use of the Langley technique and the standard lamp. Appl Opt, 34(21): 4500–4512, 512
|
| [77] |
Seckmeyer G, Bernhard G (1993). Cosine error correction of spectral UV irradiances. In: Stamnes K H, ed. Atmospheric Radiation, Proc. SPIE, 2049: 140–151
|
| [78] |
Shaw G E (1976). Error analysis of multi-wavelength sun photometry. Pure Appl Geophys, 114(1): 1–14
|
| [79] |
Shaw G E (1982). Solar spectral irradiance and atmospheric transmission at Mauna Loa Observatory. Appl Opt, 21(11): 2007–2011
|
| [80] |
Shiobara M, Spinhirne J D, Uchiyama A, Asano S (1996). Optical depth measurements of aerosol, cloud, and water vapor using Sun photometers during FIRE Cirrus IFO II. J Appl Meteorol, 35(1): 36–46
|
| [81] |
Slusser J, Gibson J, Bigelow D, Kolinski D, Disterhoft P, Lantz K, Beaubien A (2000). Langley method of calibrating UV filter radiometers. J Geophys Res, 105(D4): 4841-4849
|
| [82] |
Smirnov A, Holben B N, Eck T F, Dubovik O, Slutsker I (2000). Cloud screening and quality control algorithms for the AERONET database. Remote Sens Environ, 73(3): 337–349
|
| [83] |
Teramura A H, Sullivan J H, Ziska L H (1990). Interaction of Elevated Ultraviolet-B Radiation and CO(2) on Productivity and Photosynthetic Characteristics in Wheat, Rice, and Soybean. Plant Physiol, 94(2): 470–475
|
| [84] |
Thomason L W, Herman B M, Reagan J A (1983). The effect of atmospheric attenuators with structured vertical distributions on air mass determinations and Langley plot analysis. J Atmos Sci, 40(7): 1851–1854
|
| [85] |
Thome K J, Herman B, Reagan J (1992). Determination of precipitable water from solar transmission. J Appl Meteorol, 31(2): 157–165
|
| [86] |
Thome K J, Smith M W, Palmer J M, Reagan J A (1994). Three-channel solar radiometer for the determination of atmospheric columnar water vapor. Appl Opt, 33(24): 5811–5819
|
| [87] |
Thuillier G, Hers M, Simon P C, Labs D, Mandel H, Gillotay D (1998). Observation of the solar spectral irradiance from 200 to 870 nm during the ATLAS 1 and ATLAS 2 mission by the SOLSPEC spectrometer. Metrologia, 35(4): 689–695
|
| [88] |
Vanden Berghen F, Bersini H (2005). CONDOR, a new parallel, constrained extension of Powell’s UOBYQA algorithm: experimental results and comparison with the DFO algorithm. Journal of Computational and Applied Mathematics, 181(1): 157–175
|
| [89] |
Wielicki B A, Cess R D, King M D, Randall D A, Harrison E F (1995). Mission to Planet Earth: role of clouds and radiation in climate. Bull Am Meteorol Soc, 76: 2125–2153
|
| [90] |
Willson R C, Mordvinov A V (2003). Secular total solar irradiance trend during solar cycles 21-23. Geophys Res Lett, 30(5): 1199-1202
|
| [91] |
Wilson S R, Forgan B W (1995). In situ calibration technique for UV spectral radiometers. Appl Opt, 34: 5475–5484
|
| [92] |
Yin B, Min Q, Duan M, Bartholomew M J, Vogelmann A M, Turner D D (2011). Retrievals of cloud optical depth and effective radius from Thin-Cloud Rotating Shadowband Radiometer measurements. J Geophys Res, 116(D23): D23208
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag Berlin Heidelberg