A novel solution for outlier removal of ICESat altimetry data: a case study in the Yili watershed, China
Xiaodong HUANG, Hongjie XIE, Guoqing ZHANG, Tiangang LIANG
A novel solution for outlier removal of ICESat altimetry data: a case study in the Yili watershed, China
Due to the influence of cloud and saturated waveforms, ICESat data contain many contaminated elevation data that cannot be directly used in examining surface elevation and change. This study provides a novel solution for removing bad data and getting clean ICESat data for land applications by using threshold values of reflectivity, saturation, and gain directly from ICESat’s GLAS (Geoscience Laser Alteimeter System) 01, 05, and 06 products. It is found that each laser campaign needs different threshold compositions to assure qualified ICESat data and that bad data removal rates range from 9.6% (laser 2A) to 62.3% (laser 2B) for the test area in the Yili watershed, China. These thresholds would possibly be used in other regions to extract qualified ICESat footprints for land applications. However, it is recommended to use the steps proposed here to further examine the transferability of threshold values for other regions of different elevations and climate regimes. As an example, the resulting ICESat data are applied to examine lake level changes of two lakes in the study area.
ICESat / outliers and removal / Yili watershed / lake level
[1] |
Bhang K J, Schwartz F W, Braun A (2007). Verification of the vertical error in C-band SRTM DEM using ICESat and Landsat-7, Otter Tail County, MN. IEEE Trans Geosci Rem Sens, 45(1): 36–44
CrossRef
Google scholar
|
[2] |
Braun A, Cheng K, Csatho B, Shum C K (2004). ICESat Laser Altimetry in the Great Lakes. In: Proceedings of the 60th Annual Meeting, Dayton, OH, 409–416
|
[3] |
Brenner A C, DiMarzio J R, Zwally H J (2007). Precision and accuracy of satellite radar and laser altimeter data over the continental ice sheets. IEEE Trans Geosci Rem Sens, 45(2): 321–331
CrossRef
Google scholar
|
[4] |
Carabajal C C, Harding D J (2005). ICESat validation of SRTM C-band digital elevation models. Geophys Res Lett, 32(22): L22S01
CrossRef
Google scholar
|
[5] |
Carabajal C C, Harding D J (2006). SRTM C-band and ICESat laser altimetry elevation comparisons as a function of tree cover and relief. Photogramm Eng Remote Sensing, 72(3): 287–298
|
[6] |
Farr T G, Rosen P A, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007). The shuttle radar topography mission. Rev Geophys, 45(2): RG2004
CrossRef
Google scholar
|
[7] |
Fricker H A, Borsa A, Minster B, Carabajal C, Quinn K, Bills B (2005). Assessment of ICESat performance at the Salar de Uyuni, Bolivia. Geophys Res Lett, 32(21): L21S06
CrossRef
Google scholar
|
[8] |
Fricker H A, Padman L (2006). Ice shelf grounding zone structure from ICESat laser altimetry. Geophys Res Lett, 33(15): L15502
CrossRef
Google scholar
|
[9] |
Huang X, Xie H, Liang T, Yi D (2011). Estimating vertical error of SRTM and map-based DEMs using ICESat altimetry data in the eastern Tibetan Plateau. Int J Remote Sens, 32(18): 5177–5196
CrossRef
Google scholar
|
[10] |
Kwok R, Cunningham G F, Zwally H J, Yi D (2006). ICESat over Arctic sea ice: interpretation of altimetric and reflectivity profiles. J Geophys Res: Oceans, 111: C06006
|
[11] |
Kwok R, Cunningham G F, Zwally H J, Yi D (2007). Ice, cloud, and land elevation satellite (ICESat) over Arctic sea ice: retrieval of freeboard. J Geophys Res: Oceans, 112: C12013
|
[12] |
Kwok R, Zwally H J, Yi D (2004). ICESat observations of Arctic sea ice: a first look. Geophys Res Lett, 31(16): L16401
CrossRef
Google scholar
|
[13] |
Li Y S, Wu P F (2008). Study on the changes in Ebinur Lake based on the MODIS data. J Water Res & Engi, 19: 110–112
|
[14] |
Ma D, Zhang L, Wang Q, Zeng Q, Jiang F, Wang Y, Hu R (2003). Influence of the warm-wet climate on Sailimu Lake. J Glaciology and Geocryology, 25(2): 219–223
|
[15] |
Ma L, Wu J, Yu H, Zeng H, Abuduwaili J (2011). The Medieval Warm Period and the Little Ice Age from a sediment record of Lake Ebinur, northwest China. Boreas, 40(3): 518–524
CrossRef
Google scholar
|
[16] |
Magruder L A, Webb C E, Urban T J, Silverberg E C, Schutz B E (2007). ICESat altimetry data product verification at White Sands Space Harbor. IEEE Trans Geosci Rem Sens, 45(1): 147–155
CrossRef
Google scholar
|
[17] |
Martin C F, Thomas R H, Krabill W B, Manizade S S (2005). ICESat range and mounting bias estimation over precisely-surveyed terrain. Geophys Res Lett, 32(21): L21S07
CrossRef
Google scholar
|
[18] |
Moholdt G, Nuth C, Hagen J O, Kohler J (2010). Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sens Environ, 114(11): 2756–2767
CrossRef
Google scholar
|
[19] |
Rodriguez E, Morris C S, Belz J E (2006). A global assessment of the SRTM performance. Photogramm Eng Remote Sensing, 72: 249–260
|
[20] |
Schutz B E, Zwally H J, Shuman C A, Hancock D, DiMarzio J P (2005). Overview of the ICESat Mission. Geophys Res Lett, 32(21): L21S01
CrossRef
Google scholar
|
[21] |
Sorg A, Bolch T, Stoffel M, Solomina O, Beniston M (2012). Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Clim Change, 2(10): 725–731
CrossRef
Google scholar
|
[22] |
Sun G, Ranson K J, Kimes D S, Blair J B, Kovacs K (2008). Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data. Remote Sens Environ, 112(1): 107–117
CrossRef
Google scholar
|
[23] |
Xie H, Ackley S F, Yi D, Zwally H J, Wagner P, Weissling B, Lewis M, Ye K (2011). Sea-ice thickness distribution of the Bellingshausen Sea from surface measurements and ICESat altimetry. Deep Sea Research Part II: Topical Studies in Oceanography, 58: 1039–1051,
CrossRef
Google scholar
|
[24] |
Xing Y, de Gier A, Zhang J, Wang L (2010). An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain: a case study in Changbai mountains, China. Int J Appl Earth Obs Geoinf, 12(5): 385–392
CrossRef
Google scholar
|
[25] |
Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel D B, Joswiak D (2012). Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Clim. Change, 2(9): 663–667
|
[26] |
Yi D, Zwally H J, Sun X (2005). ICESat measurement of Greenland ice sheet surface slope and roughness. Ann Glaciol, 42(1): 83–89
CrossRef
Google scholar
|
[27] |
Zhang G, Xie H, Duan S, Tian M, Yi D (2011a). Water level variation of Lake Qinghai from satellite and in situ measurements under climate change. J Appl Remote Sens, 5(1): 053532–15
CrossRef
Google scholar
|
[28] |
Zhang G, Xie H, Kang S, Yi D, Ackley S F (2011b). Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009). Remote Sens Environ, 115(7): 1733–1742
CrossRef
Google scholar
|
[29] |
Zhang G, Xie H, Yao T, Liang T, Kang S (2012). Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data (2001-2010). Water Resour Res, 48(10): W10529
CrossRef
Google scholar
|
[30] |
Zwally H J, Jun L I, Brenner A C, Beckley M, Cornejo H G, Dimarzio J, Giovinetto M B, Neumann T A, Robbins J, Saba J L, Donghui Y I, Wang W (2011). Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 200307 versus 19922002. J Glaciol, 57(201): 88–102
CrossRef
Google scholar
|
[31] |
Zwally H J, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, Bufton J, Dezio J, Hancock D, Harding D, Herring T, Minster B, Quinn K, Palm S, Spinhirne J, Thomas R (2002). ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn, 34(3-4): 405–445
CrossRef
Google scholar
|
[32] |
Zwally H J, Yi D H, Kwok R, Zhao Y H (2008). ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J Geophys Res: Oceans, 113(C2): C02S15
CrossRef
Google scholar
|
/
〈 | 〉 |