An artificial neural network approach to estimate evapotranspiration from remote sensing and AmeriFlux data

Zhuoqi CHEN , Runhe SHI , Shupeng Zhang

Front. Earth Sci. ›› 2013, Vol. 7 ›› Issue (1) : 103 -111.

PDF (217KB)
Front. Earth Sci. ›› 2013, Vol. 7 ›› Issue (1) : 103 -111. DOI: 10.1007/s11707-012-0346-7
RESEARCH ARTICLE
RESEARCH ARTICLE

An artificial neural network approach to estimate evapotranspiration from remote sensing and AmeriFlux data

Author information +
History +
PDF (217KB)

Abstract

A simple and accurate method to estimate evapotranspiration (ET) is essential for dynamic monitoring of the Earth system at a large scale. In this paper, we developed an artificial neural network (ANN) model forced by remote sensing and AmeriFlux data to estimate ET. First, the ANN was trained with ET measurements made at 13 AmeriFlux sites and land surface products derived from satellite remotely sensed data (normalized difference vegetation index, land surface temperature and surface net radiation) for the period 2002–2006. ET estimated with the ANN was then validated by ET observed at five AmeriFlux sites during the same period. The validation sites covered five different vegetation types and were not involved in the ANN training. The coefficient of determination (R2) value for comparison between estimated and measured ET was 0.77, the root-mean-square error was 0.62 mm/d, and the mean residual was -0.28. The simple model developed in this paper captured the seasonal and interannual variation features of ET on the whole. However, the accuracy of estimated ET depended on the vegetation types, among which estimated ET showed the best result for deciduous broadleaf forest compared to the other four vegetation types.

Keywords

AmeriFlux / artificial neural network (ANN) / evapotranspiration (ET) / remote sensing

Cite this article

Download citation ▾
Zhuoqi CHEN, Runhe SHI, Shupeng Zhang. An artificial neural network approach to estimate evapotranspiration from remote sensing and AmeriFlux data. Front. Earth Sci., 2013, 7(1): 103-111 DOI:10.1007/s11707-012-0346-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen R G, Pereira L S, Raes D, Smith M (1998). Crop evapotranspiration, guideline for computing water requirements. Irrigation Drainage Paper, No. 56. FAO, Rome, Italy

[2]

Allen R G, Tasumi M, Morse A, Trezza R, Wright J L, Bastiaanssen W, Kramber W, Lorite I, Robison C W (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—applications. J Irrig Drain Eng, 133(4): 395–406

[3]

Bastiaanssen W G, Noordman M, Pelgrum E J M, Davids G, Thoreson B P, Allen R G (2005). SEBAL model with remotely sensed data to improve water resources management under actual field conditions. J Irrig Drain Eng, 131(1): 85–93

[4]

Chen J, Kyaw T P U, Ustin S L, Suchanek T H, Bond B J, Brosofske K D, Falk M (2004). Net ecosystem exchanges of carbon, water, and energy in young and old-growth Douglas-Fir forests. Ecosystems (N. Y.), 7(5): 534–544

[5]

Cleugh H, Leuning A, Mu Q, Running S W (2007). Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens Environ, 106(3): 285–304

[6]

Courault D, Seguin B, Olioso A (2005). Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. Irrig Drain Syst, 19(3–4): 223–249

[7]

Dore S, Hymus G J, Johnson D P (2003). Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia, 146: 130–147

[8]

Falge E, Baldocchi D, Olson R J, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen N O, Katul G, Keronen P, Kowalski A, Ta Lai C, Law B E, Meyers T, Moncrieff J, Moors E, William Munger J, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001). Gap filling strategies for long term energy flux data sets. Agric Meteorol, 107(1): 71–77

[9]

Gao X, Huete A R, Didan K (2003). Multisensor comparisons and validation of MODIS vegetation indices at the semiarid Jornada Experimental Range. IEEE Trans Geosci Rem Sens, 41(10): 2368–2381

[10]

Gillies R R, Carlson T N, Cui J (1997). A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index (NDVI) and surface e. Int J Remote Sens, 18(15): 3145–3166

[11]

Haykin S (1994). Neural Networks–A Comprehensive Foundation. New York: MacMillan College Publishing Company

[12]

Hollinger S E, Bernacchi C J, Meyers T P (2005). Carbon budget of mature no-till ecosystem in North Central Region of the United States. Agric Meteorol, 130(1–2): 59–69

[13]

Irmak A, Kamble B (2009). Evapotranspiration data assimilation with genetic algorithms and SWAP model for on-demand irrigation. Irrig Sci, 28(1): 101–112

[14]

Jung M, Reichstein M, Ciais P, Seneviratne S I, Sheffield J, Goulden M L, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman A J, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law B E, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson A D, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467: 951–954

[15]

Kustas W P, Norman J M (1996). Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrological Sciences Journal, 41(4): 495–516

[16]

Li Z L, Tang R, Wan Z, Bi Y, Zhou C, Tang B, Yan G, Zhang X (2009). A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors, 9(5): 3801–3853

[17]

Lu X, Zhuang Q (2010). Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data. Remote Sens Environ, 114(9): 1924–1939

[18]

Ma S Y, Baldocchi D D, Xu L, Hehn T (2007). Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agric Meteorol, 147(3–4): 157–171

[19]

Mackay D S, Ewers B E, Cook B D, Davis K J (2007). Environmental drivers of evapotranspiration in a shrub wetland and an upland forest in northern Wisconsin. Water Resources Research, 43: W03442.1–W03442.14

[20]

Misson L, Baldocchi D D, Black T A, Blanken P D, Brunet Y, Curiel Yuste J, Dorsey J R, Falk M, Granier A, Irvine M R, Jarosz N, Lamaud E, Launiainen S, Law B E, Longdoz B, Loustau D, McKay M, Paw U K T, Vesala T, Vickers D, Wilson K B, Goldstein A H (2007). Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: a synthesis based on FLUXNET data. Agric Meteorol, 144(1–2): 14–31

[21]

Monteith J L (1965). Evaporation and environment. Symp Soc Exp Biol, 19: 205–234

[22]

Mu Q, Heinsch F A, Zhao M, Running S W (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ, 111(4): 519–536

[23]

Mu Q, Zhao M, Running S W (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ, 115(8): 1781–1800

[24]

Nagler P L, Cleverly J, Glenn E, Lampkin D, Huete A, Wan Z (2005a). Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sens Environ, 94(1): 17–30

[25]

Nagler P L, Scott R, Westenburg C, Cleverly J, Glenn E, Huete A (2005b). Evapotranspiration on western U.S. rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sens Environ, 97(3): 337–351

[26]

Nemani R R, Running S W (1989). Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J Appl Meteorol, 28(4): 276–284

[27]

Nishida K, Nemani R R, Glassy J M, Running S W (2003). Development of an evapotranspiration index from aqua/MODIS for monitoring surface moisture status. IEEE Trans Geosci Rem Sens, 41(2): 493–501

[28]

Oki T, Kanae S (2006). Global hydrological cycles and world water resources. Science, 313(5790): 1068–1072

[29]

Olioso A, Chauki H, Courault D, Wigneron J P (1999). Estimation of evapotranspiration and photosynthesis by assimilation of remote sensing data into SVAT models. Remote Sens Environ, 68(3): 341–356

[30]

Olioso A, Inoue Y, Ortega-FARIAS S, Demarty J, Wigneron J P, Braud I, Jacob F, Lecharpentier P, OttlÉ C, Calvet J C, Brisson N (2005). Future directions for advanced evapotranspiration modeling: assimilation of remote sensing data into crop simulation models and SVAT models. Irrig Drain Syst, 19(3–4): 377–412

[31]

Overgaard J, Rosbjerg D, Butts M B (2006). Land-surface modeling in hydrological perspective—a review. Biogeosciences, 3(2): 229–241

[32]

Pan M, Wood E (2006). Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman filter. J Hydrometeorol, 7(3): 534–547

[33]

Rumelhart D E, Hinton G E, Williams R J (1986). Learning representations by back-propagating errors. Nature, 323(6088): 533–536

[34]

Sims P L, Bradford J A (2001). Carbon dioxide fluxes in a southern plains prairie. Agric Meteorol, 109(2): 117–134

[35]

Su Z (2002). The surface energy balance system (SEBS) (for estimation of turbulent heat fluxes). Hydrol Earth Syst Sci, 6(1): 85–100

[36]

Tang Q, Peterson S, Cuenca R H, Hagimoto Y, Lettenmaier D P (2009). Satellite-based near real-time estimation of irrigated crop water consumption. J Geophys Res, 114(D5): D05114

[37]

Twine T E, Kustas W P, Norman J M, Cook D R, Houser P R, Meyers T P, Prueger J H, Starks P J, Wesely M L (2000). Correcting eddy-covariance flux underestimates over a grassland. Agric Meteorol, 103(3): 279–300

[38]

Urbanski S, Barford C, Wofsy S, Kucharik C, Pyle E, Budney J, McKain K, Fitzjarrald D, Czikowsky M, Munger J W (2007). Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. J Geophys Res, 112(G2): G02020

[39]

Verma S B, Dobermann A, Cassman K G, Walters D T, Knops J M, Arkebauer T J, Suyker A E, Burba G G, Amos B, Yang H, (2005). Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agricultural and Forest Meteorology, 131(1–2): 77–96

[40]

Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law B E, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002). Energy balance closure at FLUXNET sites. Agric Meteorol, 113(1–4): 223–243

[41]

Xu L K, Baldocchi D D (2004). Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agric Meteorol, 123(1–2): 79–96

[42]

Yang F, White M, Michaelis A, Ichii K, Hashimoto H, Votava P, Zhu A X, Nemani R R (2006). Prediction of continental-scale evapotranspiration by combining MODIS and Ameriflux data through support vector machine. IEEE Trans Geosci Rem Sens, 44(11): 3452–3461

[43]

Yi C, Davis K J, Bakwin P S, Berger B W, Marr L C (2000). Influence of advection on measurements of the net ecosystem-atmosphere exchange of CO2 from a very tall tower. Journal of Geography Research, 105: 9991–9999

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (217KB)

1745

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/