Co-occurrence of nitrite-dependent anaerobic methane oxidizing and anaerobic ammonia oxidizing bacteria in two Qinghai-Tibetan saline lakes

Jian YANG, Hongchen JIANG, Geng WU, Weiguo HOU, Yongjuan SUN, Zhongping LAI, Hailiang DONG

PDF(359 KB)
PDF(359 KB)
Front. Earth Sci. ›› DOI: 10.1007/s11707-012-0336-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Co-occurrence of nitrite-dependent anaerobic methane oxidizing and anaerobic ammonia oxidizing bacteria in two Qinghai-Tibetan saline lakes

Author information +
History +

Abstract

Nitrite-dependent anaerobic methane-oxidizing (n-damo) bacteria and anaerobic ammonia oxidizing (anammox) bacteria are two groups of microorganisms involved in global carbon and nitrogen cycling. In order to test whether the n-damo and anammox bacteria co-occur in natural saline environments, the DNA and cDNA samples obtained from the surficial sediments of two saline lakes (with salinity of 32 and 84 g/L, respectively) on the Tibetan Plateau were PCR-amplified with the use of anammox- and n-damo-specific primer sets, followed by clone library construction and phylogenetic analysis. DNA and cDNA-based clones affiliated with n-damo and anammox bacteria were successfully retrieved from the two samples, indicating that these two groups of bacteria can co-occur in natural saline environments with salinity as high as 84 g/L. Our finding has great implications for our understanding of the global carbon and nitrogen cycle in nature.

Keywords

anammox / n-damo / co-occurrence / saline lakes / Qinghai-Tibetan Plateau

Cite this article

Download citation ▾
Jian YANG, Hongchen JIANG, Geng WU, Weiguo HOU, Yongjuan SUN, Zhongping LAI, Hailiang DONG. Co-occurrence of nitrite-dependent anaerobic methane oxidizing and anaerobic ammonia oxidizing bacteria in two Qinghai-Tibetan saline lakes. Front Earth Sci, https://doi.org/10.1007/s11707-012-0336-9

References

[1]
Amano T, Yoshinaga I, Okada K, Yamagishi T, Ueda S, Obuchi A, Sako Y, Suwa Y (2007). Detection of anammox activity and diversity of anammox bacteria-related 16S rRNA genes in coastal marine sediment in Japan. Microbes Environ, 22(3): 232-242
CrossRef Google scholar
[2]
Analytical Lab of Qinghai Institute of Salt Lakes, Chinese Academy of Sciences (1988). Analytical Methods of Brine and Salt. Beijing: Science Press (in Chinese)
[3]
Bakermans C, Madsen E L (2002). Diversity of 16S rDNA and naphthalene dioxygenase genes from coal-tar-waste-contaminated aquifer waters. Microb Ecol, 44(2): 95-106
Pubmed
[4]
Bogner J, Pipatti R, Hashimoto S, Diaz C, Mareckova K, Diaz L, Kjeldsen P, Monni S, Faaij A, Gao Q, Zhang T, Ahmed M A, Sutamihardja R T, Gregory R (2008). Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste Manage Res, 26(1): 11-32
CrossRef Pubmed Google scholar
[5]
Borin S, Brusetti L, Mapelli F, D’Auria G, Brusa T, Marzorati M, Rizzi A, Yakimov M, Marty D, De Lange G J, Van der Wielen P, Bolhuis H, McGenity T J, Polymenakou P N, Malinverno E, Giuliano L, Corselli C, Daffonchio D (2009). Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. Proc Natl Acad Sci USA, 106(23): 9151-9156
CrossRef Pubmed Google scholar
[6]
Cakir F Y, Stenstrom M K (2005). Greenhouse gas production: a comparison between aerobic and anaerobic wastewater treatment technology. Water Res, 39(17): 4197-4203
CrossRef Pubmed Google scholar
[7]
Dalsgaard T, Thamdrup B, Canfield D E (2005). Anaerobic ammonium oxidation (anammox) in the marine environment. Res Microbiol, 156(4): 457-464
CrossRef Pubmed Google scholar
[8]
Dang H, Chen R, Wang L, Guo L, Chen P, Tang Z, Tian F, Li S, Klotz M G (2010). Environmental factors shape sediment anammox bacterial communities in hypernutrified Jiaozhou Bay, China. Appl Environ Microbiol, 76(21): 7036-7047
CrossRef Pubmed Google scholar
[9]
Devol A H (2003). Nitrogen cycle: Solution to a marine mystery. Nature, 422(6932): 575-576
CrossRef Pubmed Google scholar
[10]
Ettwig K F, Butler M K, Le Paslier D, Pelletier E, Mangenot S, Kuypers M M M, Schreiber F, Dutilh B E, Zedelius J, de Beer D, Gloerich J, Wessels H J C T, van Alen T, Luesken F, Wu M L, van de Pas-Schoonen K T, Op den Camp H J M, Janssen-Megens E M, Francoijs K J, Stunnenberg H, Weissenbach J, Jetten M S M, Strous M (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464(7288): 543-548
CrossRef Pubmed Google scholar
[11]
Ettwig K F, Shima S, van de Pas-Schoonen K T, Kahnt J, Medema M H, Op den Camp H J M, Jetten M S M, Strous M (2008). Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol, 10(11): 3164-3173
CrossRef Pubmed Google scholar
[12]
Ettwig K F, van Alen T, van de Pas-Schoonen K T, Jetten M S M, Strous M (2009). Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol, 75(11): 3656-3662
CrossRef Pubmed Google scholar
[13]
Francis C A, Beman J M, Kuypers M M (2007). New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J, 1(1): 19-27
CrossRef Pubmed Google scholar
[14]
Hong Y G, Li M, Cao H, Gu J D (2011). Residence of habitat-specific anammox bacteria in the deep-sea subsurface sediments of the South China Sea: analyses of marker gene abundance with physical chemical parameters. Microb Ecol, 62(1): 36-47
CrossRef Pubmed Google scholar
[15]
Hu S, Zeng R J, Burow L C, Lant P, Keller J, Yuan Z (2009). Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environ Microbiol Rep, 1(5): 377-384
CrossRef Google scholar
[16]
Jiang H, Deng S, Huang Q, Dong H, Yu B (2010). Response of aerobic anoxygenic phototrophic bacterial diversity to environment conditions in saline lakes and Daotang River on the Tibetan Plateau, NW China. Geomicrobiol J, 27(5): 400-408
CrossRef Google scholar
[17]
Kalyuzhnaya M G, Lidstrom M E, Chistoserdova L (2008). Real-time detection of actively metabolizing microbes by redox sensing as applied to methylotroph populations in Lake Washington. ISME J, 2(7): 696-706
CrossRef Pubmed Google scholar
[18]
Kartal B, Koleva M, Arsov R, van der Star W, Jetten M S M, Strous M (2006). Adaptation of a freshwater anammox population to high salinity wastewater. J Biotechnol, 126(4): 546-553
CrossRef Pubmed Google scholar
[19]
Koizumi Y, Kojima H, Fukui M (2003). Characterization of depth-related microbial community structure in lake sediment by denaturing gradient gel electrophoresis of amplified 16S rDNA and reversely transcribed 16S rRNA fragments. FEMS Microbiol Ecol, 46(2): 147-157
CrossRef Pubmed Google scholar
[20]
Kuypers M M M, Lavik G, Thamdrup B (2006). Anaerobic ammonium oxidation in the marine environment. Past and Present Water Column Anoxia. L. N. Neretin. Springer Netherlands., 64: 311-335
[21]
Kuypers M M M, Sliekers A O, Lavik G, Schmid M, Jørgensen B B, Kuenen J G, Sinninghe Damsté J S, Strous M, Jetten M S M (2003). Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 422(6932): 608-611
CrossRef Pubmed Google scholar
[22]
Li M, Gu J D (2011). Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria. Appl Microbiol Biotechnol, 90(4): 1241-1252
CrossRef Pubmed Google scholar
[23]
Li M, Hong Y, Klotz M G, Gu J D (2010). A comparison of primer sets for detecting 16S rRNA and hydrazine oxidoreductase genes of anaerobic ammonium-oxidizing bacteria in marine sediments. Appl Microbiol Biotechnol, 86(2): 781-790
CrossRef Pubmed Google scholar
[24]
López-Archilla A I, Moreira D, Velasco S, López-García P (2007). Archaeal and bacterial community composition of a pristine coastal aquifer in Donana National Park, Spain. Aquat Microb Ecol, 47: 123-139
CrossRef Google scholar
[25]
Luesken F A, Sánchez J, van Alen T A, Sanabria J, Op den Camp H J M, Jetten M S M, Kartal B (2011a). Simultaneous nitrite-dependent anaerobic methane and ammonium oxidation processes. Appl Environ Microbiol, 77(19): 6802-6807
CrossRef Pubmed Google scholar
[26]
Luesken F A, Zhu B, van Alen T A, Butler M K, Diaz M R, Song B, Op den Camp H J M, Jetten M S M, Ettwig K F (2011b). pmoA Primers for detection of anaerobic methanotrophs. Appl Environ Microbiol, 77(11): 3877-3880
CrossRef Pubmed Google scholar
[27]
Miller D N, Smith R L (2009). Microbial characterization of nitrification in a shallow, nitrogen-contaminated aquifer, Cape Cod, Massachusetts and detection of a novel cluster associated with nitrifying Betaproteobacteria. J Contam Hydrol, 103(3-4): 182-193
CrossRef Pubmed Google scholar
[28]
Mulder A, van de Graaf A A, Robertson L A, Kuenen J G (1995). Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol, 16(3): 177-184
CrossRef Google scholar
[29]
Nakajima J, Sakka M, Kimura T, Sakka K (2008). Detection of anaerobic ammonium-oxidizing bacteria in Ago Bay sediments. Biosci Biotechnol Biochem, 72(8): 2195-2198
CrossRef Pubmed Google scholar
[30]
Oren A (2011). Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol, 13(8): 1908-1923
CrossRef Pubmed Google scholar
[31]
Penton C R, Devol A H, Tiedje J M (2006). Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl Environ Microbiol, 72(10): 6829-6832
CrossRef Pubmed Google scholar
[32]
Raghoebarsing A A, Pol A, van de Pas-Schoonen K T, Smolders A J P, Ettwig K F, Rijpstra W I C, Schouten S, Damsté J S S, Op den Camp H J M, Jetten M S M, Strous M (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440(7086): 918-921
CrossRef Pubmed Google scholar
[33]
Rappé M S, Giovannoni S J (2003). The uncultured microbial majority. Annu Rev Microbiol, 57(1): 369-394
Pubmed
[34]
Rich J J, Dale O R, Song B, Ward B B (2008). Anaerobic ammonium oxidation (anammox) in Chesapeake Bay sediments. Microb Ecol, 55(2): 311-320
CrossRef Pubmed Google scholar
[35]
Schloss P D, Handelsman J (2005). Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol, 71(3): 1501-1506
CrossRef Pubmed Google scholar
[36]
Schmid M C, Hooper A B, Klotz M G, Woebken D, Lam P, Kuypers M M M, Pommerening-Roeser A, Op den Camp H J M, Jetten M S M (2008). Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria. Environ Microbiol, 10(11): 3140-3149
CrossRef Pubmed Google scholar
[37]
Schmid M C, Risgaard-Petersen N, van de Vossenberg J, Kuypers M M M, Lavik G, Petersen J, Hulth S, Thamdrup B, Canfield D, Dalsgaard T, Rysgaard S, Sejr M K, Strous M, den Camp H J, Jetten M S M (2007). Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol, 9(6): 1476-1484
CrossRef Pubmed Google scholar
[38]
Strous M, Fuerst J A, Kramer E H M, Logemann S, Muyzer G, van de Pas-Schoonen K T, Webb R, Kuenen J G, Jetten M S M (1999). Missing lithotroph identified as new planctomycete. Nature, 400(6743): 446-449
CrossRef Pubmed Google scholar
[39]
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28(10): 2731-2739
CrossRef Pubmed Google scholar
[40]
van Breukelen B M, Griffioen J (2004). Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH4, and CH4 oxidation. J Contam Hydrol, 73(1-4): 181-205
CrossRef Pubmed Google scholar
[41]
van de Graaf A A, Mulder A, de Bruijn P, Jetten M S, Robertson L A, Kuenen J G (1995). Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol, 61(4): 1246-1251
Pubmed
[42]
Wu M L, Ettwig K F, Jetten M S, Strous M, Keltjens J T, van Niftrik L (2011). A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’. Biochem Soc Trans, 39(1): 243-248
CrossRef Pubmed Google scholar
[43]
Zhang G, Tian J, Jiang N, Guo X, Wang Y, Dong X (2008). Methanogen community in Zoige wetland of Tibetan plateau and phenotypic characterization of a dominant uncultured methanogen cluster ZC-I. Environ Microbiol, 10(7): 1850-1860
CrossRef Pubmed Google scholar
[44]
Zhu G, Jetten M S, Kuschk P, Ettwig K F, Yin C (2010). Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. Appl Microbiol Biotechnol, 86(4): 1043-1055
CrossRef Pubmed Google scholar

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 41002123 , 41030211, and 41121001), the National Basic Research Program of China (Grant No. 2011CB808800), the Fundamental Research Founds for National University, China University of Geosciences (Wuhan), and the One-hundred Talent Project (A0961)βof CAS grant to ZPL. We are grateful to Huanye Wang at the Institute of Earth Environment, Chinese Academy of Sciences and Jinxiang Wang at Tongji University for helping with sample collection. We are grateful to three anonymous reviewers whose constructive criticisms significantly improved the quality of the manuscript.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(359 KB)

Accesses

Citations

Detail

Sections
Recommended

/