Estimating potential yield of wheat production in China based on cross-scale data-model fusion

Zhan TIAN, Honglin ZHONG, Runhe SHI, Laixiang SUN, Günther FISCHER, Zhuoran LIANG

PDF(362 KB)
PDF(362 KB)
Front. Earth Sci. ›› DOI: 10.1007/s11707-012-0332-0
RESEARCH ARTICLE

Estimating potential yield of wheat production in China based on cross-scale data-model fusion

Author information +
History +

Abstract

The response of the agro-ecological system to the environment includes the response of individual crop’s physiologic process and the adaption of the crop community to the environment. Observation and simulation at the single scale level cannot fully explain the above process. It is necessary to develop cross-scale agro-ecological models and study the interaction of agro-ecological processes across different scales. In this research, two typical agro-ecological models, the Decision Support System for Agro-technology Transfer (DSSAT) model and the Agro-ecological Zone (AEZ) model, are employed, and a framework for effective cross-scale data-model fusion is proposed and illustrated. The national observed data from 36 different agricultural observation stations and historical weather stations (1962-1999) are employed to estimate average crop productivity. Comparison of the two models’ estimations are consistent, which would indicate the possibility ofcross-scale crop model fusion.

Keywords

DSSAT model / AEZ model / data-model fusion / agro-ecological system

Cite this article

Download citation ▾
Zhan TIAN, Honglin ZHONG, Runhe SHI, Laixiang SUN, Günther FISCHER, Zhuoran LIANG. Estimating potential yield of wheat production in China based on cross-scale data-model fusion. Front Earth Sci, https://doi.org/10.1007/s11707-012-0332-0

References

[1]
Bannayan M, Crout N M J, Hoogenboom G (2003). Application of the CERES-Wheat model for within-season prediction of winter wheat yield in the United Kingdom. Agron J, 95(1): 114-125
CrossRef Google scholar
[2]
Batjes N H (2009). Harmonized soil profile data for applications at global and continental scales: updates to the WISE database. Soil Use Manage, 25(2): 124-127
CrossRef Google scholar
[3]
Baumer O W, Rice J W (1988). Methods to predict soil input data for DRAINMOD. ASAE Paper No. 88-2564
[4]
Beven K, Binley A (1992). The future of distributed models: model calibration and uncertainty prediction. Hydrol Processes, 6(3): 279-298
CrossRef Google scholar
[5]
Blasone R S, Vrugt J A, Madsen H, Rosbjerg D, Robinson B A, Zyvoloski G A (2008). Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling. Adv Water Resour, 31(4): 630-648
CrossRef Google scholar
[6]
Brooks S (1998). Markov chain Monte Carlo method and its application. Journal of the Royal Statistical Society (D),: The Statistician, 47(1): 69-100
CrossRef Google scholar
[7]
Campbell E P, Fox D R, Bates B C (1999). A Bayesian Approach to parameter estimation and pooling in nonlinear flood event models. Water Resour Res, 35(1): 211-220
CrossRef Google scholar
[8]
Dente L, Satalino G, Mattia F, Rinaldi M (2008). Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield. Remote Sens Environ, 112(4): 1395-1407
CrossRef Google scholar
[9]
Fang H L, Liang S L, Hoogenboom G, Teasdalec J, Cavigellic M (2008). Corn-yield estimation through assimilation of remotely sensed data into the CSM-CERES-Maize model. Int J Remote Sens, 29(10): 3011--3032
CrossRef Google scholar
[10]
FAO/IIASA/ISRIC/ISSCAS/JRC (2009). Harmonized World Soil Database (version 1.1). FAO, Rome, Italy and IIASA, Laxenburg, Austria
[11]
Fischer G, Nachtergaele F, Prieler S, Velthuizenvan H T, Verelst L, Wiberg D (2008). GlobalAgro-ecological Zones Assessment for Agriculture(GAEZ 2008). IIASA, Laxenburg, Austriaand FAO, Rome, Italy
[12]
Gijsman A J, Jagtap S S, Jones J W (2002). Wading through a swampof completeconfusion: how to choose a method for estimating soilwater retentionparameters for crop models. Eur J Agron, 18(1-2): 75-105
[13]
Gijsman A J, Thornton P K, Hoogenboom G (2007). Using the WISE databaseto parameterizesoil inputs for crop simulation models. Comput Electron Agric, 56(2): 85-100
CrossRef Google scholar
[14]
Hastings W K (1970). Monte Carlo sampling methods using Markov chains andtheir applications. Biometrika, 57(1): 97-109
CrossRef Google scholar
[15]
He J, Jones J W, Graham W D, Dukes M D (2010). Influence of likelihoodfunctionchoice for estimating crop model parameters using the generalizedlikelihooduncertainty estimation method. Agric Syst, 103(5): 256-264
CrossRef Google scholar
[16]
Heinemann A B, Hoogenboom G,de Faria R T (2002). Determination ofspatialwater requirements at county and regional levels using cropmodelsand GIS. Agric Water Manage, 52(3): 177-196
CrossRef Google scholar
[17]
Hunt L A, Pararajasingham S, Jones J W, Hoogenboom G, Imamura D T, Ogoshi R M (1993). GENCALC: software to facilitate theuse of crop modelsfor analyzing field experiments. AgronJ, 85(5): 1090-1094
CrossRef Google scholar
[18]
Iizumi T, Yokozawa M, Nishimori M (2009). Parameter estimationand uncertaintyanalysis of a large-scale crop model for paddy rice:application ofa Bayesian approach. AgricMeteorol, 149(2): 333-348
CrossRef Google scholar
[19]
Jiang P, He Z, Kitchen N R, SudduthK A(2009). Bayesiananalysis ofwithin-field variability of corn yield using a spatialhierarchicalmodel. Precis Agric, 10(2): 111-127
CrossRef Google scholar
[20]
Jones J W, Hoogenboom G, Porter C H, Boote K J, Batchelor W D, Hunt L A, Wilkens P W, Singh U, Gijsman A J, Ritchie J T (2003). The DSSAT cropping system model. Eur J Agron, 18(3-4): 235-265
CrossRef Google scholar
[21]
Liang S L, Fang H L, Court G F, Teasdale J, Cavigelli M (2004). Estimation of crop yield at the regionalscale from MODIS observations. In: IGARSS2004, IEEE Cat. No. 04CH37612.
[22]
Lobell D B, Ortiz-Monasterio J I (2006). Evaluatingstrategies for improvedwater use in spring wheat with CERES. AgricWater Manage, 84(3): 249-258
CrossRef Google scholar
[23]
Lobell D B, Ortiz-Monasterio J I, Asner G P, Matson P, Naylor R L, Falcon W P (2005). Analysis of wheat yield and climatic trendsin Mexico. Field Crops Res, 94(2-3): 250-256
CrossRef Google scholar
[24]
Lunn D J, Thomas A, Best N, Spiegelhalter D (2000). WinBUGS-a Bayesian modelling framework: concepts,structure, and extensibility. Statisticsand Computing, 10(4): 325-337
[25]
Makowski D, Wallach D, Tremblay M (2002). Using a Bayesian approachto parameterestimation; comparison of the GLUE and MCMC methods. Agronomie, 22(2): 191-203
CrossRef Google scholar
[26]
Pohlert T (2004). Use of empirical global radiation models for maize growth simulation. Agric Meteorol, 126(1-2): 47-58
CrossRef Google scholar
[27]
Prevot L, Chauki H, Troufleau D, Weiss M, Baret F, Brisson N (2003). Assimilating optical and radar data into the STICS crop model forwheat. Agronomie, 23(4): 297-303
CrossRef Google scholar
[28]
Rawls W J, Brakensiek D L, Saxton K E (1982). Estimation of soilwaterproperties. Trans ASAE, 25(5): 1316-1320, 1328
[29]
Ritchie J T, Godwin D C, Singh U (1989). Soil and Water inputsfor IBSNAT cropmodels. In: DSSAT. IBSNATSymposium. PartI. Las Vegas, Nevada, 31-47
[30]
Seidl M S, Batchelor W D, Fallick J B, Paz J O (2001). GIS-cropmodel based decision supportsystem to evaluate corn and soybean prescriptions. Appl Eng Agric, 17(5): 721-728
[31]
Tao F L, Yokozawa M, Xu Y L, Hayashi Y, Zhang Z (2006). Climatechanges and trends in phenology andyields of field crops in China,1981-2000. Agric Meteorol, 138(1-4): 82-92
CrossRef Google scholar
[32]
Tao F L, Yokozawa M, Zhang Z (2009). Modelling the impactsof weather andclimate variability on crop productivity over a largearea: a new process-basedmodel development, optimization, and uncertaintiesanalysis. Agric Meteorol, 149(5): 831-850
CrossRef Google scholar
[33]
Thornton P K, Booltink H W G, Stoorvogel JJ (1997). A computerprogramfor geostatistical and spatial analysis of crop model outputs. Agron J, 89(4): 620-627
CrossRef Google scholar
[34]
Timmermann C, Gerhards R, Khbauch W (2002). Analyse der Ertrags-und Unkrautverteilungin Ackerschlgen mit einem Geo-Informations-System(GIS). J Agron Crop Sci, 188(1): 34-42
CrossRef Google scholar
[35]
Timsina J, Humphreys E (2006). Performanceof CERES-Rice and CERES-Wheatmodels in rice-wheat systems: A review. Agric Syst, 90(1-3): 5-31
CrossRef Google scholar
[36]
Xiong W, Conway D, Holman I, Lin E (2008). Evaluation of CERES-Wheat simulation of wheatproduction in China. Agron J, 100(6): 1720-1728
CrossRef Google scholar

Acknowledgements

This research was jointly supported by the Open Research Funding Program of Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University (No. KLGIS2011A11), the National Natural Science Foundation of China (Grant Nos. 40921140410 and 41111140133) and the Climate Change Specific Topic of China Meteorological Administration (No. CCSF2011-12).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(362 KB)

Accesses

Citations

Detail

Sections
Recommended

/