How severe is the modern biotic crisis? ---- A comparison of global change and biotic crisis between Permian-Triassic transition and modern times

Hongfu YIN, Weihong HE, Shucheng XIE

PDF(235 KB)
PDF(235 KB)
Front. Earth Sci. ›› 2011, Vol. 5 ›› Issue (1) : 1-13. DOI: 10.1007/s11707-011-0160-7
FEATURE ARTICLE
FEATURE ARTICLE

How severe is the modern biotic crisis? ---- A comparison of global change and biotic crisis between Permian-Triassic transition and modern times

Author information +
History +

Abstract

A comparison of the modern condition with the Permian-Triassic Boundary (PTB) times was made to estimate how severe the modern biotic crisis is. About the global changes, the two periods are correlative in carbon dioxide concentration and carbon isotope negative excursion, UV strengthening, temperature increase, ocean acidification, and weathering enhancement. The following tendencies of biotic crises are also correlative: acceleration of extinction rates accompanied by parabolic curve of extinction with a turning interval representing the critical crisis; decline of the three main ecosystems: reefs, tropical rain forests and marine phytoplankton. It is also interesting to note that certain leading organism in both periods undergo accelerated evolution during the crisis. The comparison shows that the modern crisis is about at the turning point from decline to decimation. The extinction curve is now parabolic, and the extinction rate has been accelerated, but the decimation is not yet in real. This is also justified by the modern situation of the three main ecosystems. Modern biotic decline may worsen into decimation and mass extinction but may also get better and recover to ordinary evolution. Since human activities are the main cause of the deterioration of environments and organisms, mankind should be responsible and able to strive for the recovery of the crisis. For the future of mankind, Homo sapiens may become extinct, i.e., disappear without leaving descendants, or evolve into a new and more advanced species, i.e., disappear but leave descendants. For a better future, mankind should be conscious of the facing danger and act as a whole to save biodiversity and harmonize with the environments.

Keywords

comparison / global change / biotic crisis / Permian-Triassic Boundary (PTB) / modern times

Cite this article

Download citation ▾
Hongfu YIN, Weihong HE, Shucheng XIE. How severe is the modern biotic crisis? ---- A comparison of global change and biotic crisis between Permian-Triassic transition and modern times. Front Earth Sci, 2011, 5(1): 1‒13 https://doi.org/10.1007/s11707-011-0160-7

References

[1]
Alpen E L (1998). Radiation Biophysics. New York: Academic, 2nd ed, 484
[2]
Behrenfeld M J, O’Malley R T, Siegel D A, McClain C R, Sarmiento J L, Feldman G C, Milligan A J, Falkowski P G, Letelier R M, Boss E S (2006). Climate-driven trends in contemporary ocean productivity. Nature, 444(7120): 752–755
CrossRef Pubmed Google scholar
[3]
Bowring S A, Erwin D H, Jin Y G, Martin M W, Davidek K, Wang W (1998). U/Pb zircon geochronology and tempo of the end-permian mass extinction. Science, 280(5366): 1039–1045
CrossRef Pubmed Google scholar
[4]
Boyce D G, Lewis M R, Worm B (2010). Global phytoplankton decline over the past century. Nature, 466: 591–596
[5]
Butchart S H M, Walpole M, Collen B, van Strien A, Scharlemann J P W, Almond R E A, Baillie J E M, Bomhard B, Brown C, Bruno J, Carpenter K E, Carr G M, Chanson J, Chenery A M, Csirke J, Davidson N C, Dentener F, Foster M, Galli A, Galloway J N, Genovesi P, Gregory R D, Hockings M, Kapos V, Lamarque J F, Leverington F, Loh J, McGeoch M A, McRae L, Minasyan A, Morcillo M H, Oldfield T E E, Pauly D, Quader S, Revenga C, Sauer J R, Skolnik B, Spear D, Stanwell-Smith D, Stuart S N, Symes A, Tierney M, Tyrrell T D, Vie J C, Watson R (2010). Global biodiversity: indicators of recent declines. Science, 328(5982): 1164–1168
CrossRef Pubmed Google scholar
[6]
Chai C F, Zhou Y Q, Mao X Y, Ma S L, Kong P, He J W (1992). Geochemical constraints on the Permo-Triassic boundary event in South China. In: Sweet W C, Yang Z Y, Dickins J M, Yin H F, eds. Permo-Triassic Events in the Eastern Tethys. Cambridge: Cambridge University Press, 158–168
[7]
Dobson A P (1996). Conservation and Biodiversity. New York: Scientific American Library, Freeman & Co
[8]
Eldredge N (1998). Life in the Balance: Humanity and the Biodiversity Crisis. Princeton: Princeton University Press, 240
[9]
Erwin D H (1993). The Great Paleozoic Crisis: Life and Death in the Permian. New York: Columbia University Press, 327
[10]
Food and Agriculture Organization of the United Nations (FAO) (2001). State of the World’s Forests. Rome: FAO
[11]
Food and Agriculture Organization of the United Nations (FAO) (2005). “Pan-tropical Survey of Forest Cover Changes 1980–2000”. In: Forest Resources Assessment. Rome: FAO
[12]
Gradstein F, Ogg J, Smith A (2004). A Geologic Time Scale. London: Cambridge University Press, 589
[13]
Grice K, Cao C Q, Love G D, Böttcher M E, Twitchett R J, Grosjean E, Summons R E, Turgeon S C, Dunning W, Jin Y (2005). Photic zone euxinia during the Permian-triassic superanoxic event. Science, 307(5710): 706–709
CrossRef Pubmed Google scholar
[14]
Groombridge B (1992). Global biodiversity-status of the Earth’s living resources. A Report Compiled by the World Conservation Monitoring Center. London: Chapman & Hall, 192–265
[15]
Hall-Spencer J M, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner S M, Rowley S J, Tedesco D, Buia M C (2008). Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature, 454(7200): 96–99
CrossRef Pubmed Google scholar
[16]
Hawks J, Wang E T, Cochran G M, Harpending H C, Moyzis R K (2007). Recent acceleration of human adaptive evolution. Proc Natl Acad Sci USA, 104(52): 20753–20758
CrossRef Pubmed Google scholar
[17]
He W H, Yin H F, Sheng G L, Zhou X G (2004). Comparison of Paleozoic-Mesozoic mass extinction with big erosion of current biodiversity. Earth Science—Journal of China Universlty of Geosciences, 29(3): 263–269
[18]
Heywood V H (1995). Global Biodiversity Assessment. Cambridge: Cambridge University Press, 258
[19]
Horita J, Zimmermann H, Holland H D (2002). Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporates. Geochim Cosmochim Acta, 66(21): 3733–3756
CrossRef Google scholar
[20]
Hotinski R M, Bice K L, Kump L R, Najjar R G, Arthur M A (2001). Ocean stagnation and end-Permian anoxia. Geology, 29(1): 7–10
CrossRef Google scholar
[21]
Huang X Y, Jiao D, Lu L Q, Xie S C, Huang J H, Wang Y B, Yin H F, Wang H M, Zhang K X, Lai X L (2007). The fluctuating environment associated with the episodic biotic crisis during the Permo-Triassic transition: Evidence from microbial biomarkers in Changxing, Zhejiang Province. Science in China (Series D), 50(7): 1052–1059
CrossRef Google scholar
[22]
Intergovernmental Panel on Climate Change (IPCC) (2007). Climate change 2007: The physical science basis: Contribution of Working Group 1 to the Fourth Assessment Report of IPCC. Cambridge: Cambridge University Press
[23]
Jiang H S, Lai X L, Luo G M, Aldridge R, Zhang K, Wignall P (2007). Restudy of conodont zonation and evolution across the P/T Boundary at Meishan Section, Changxing, Zhejiang, China. Global Planet Change, 55(1–3): 39–55
CrossRef Google scholar
[24]
Jin Y G, Wang Y, Wang W, Shang Q H, Cao C Q, Erwin D H (2000). Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 289(5478): 432–436
CrossRef Pubmed Google scholar
[25]
Key R M, Kozyr A, Sabine C L, Lee K, Wanninkhof R, Bullister J L, Freely R A, Millero F J, Mordy C, Peng T H (2004). A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem Cycles, GB4031, 23
CrossRef Google scholar
[26]
Knoll A H, Bambach R K, Payne J L, Pruss S, Fischer W (2007). Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett, 256(3–4): 295–313
CrossRef Google scholar
[27]
Korte C, Kozur H W, Mohtat-Aghai P (2004). Dzhulfian to lowermost Triassic δ13C record at the Permian/Triassic boundary section at Shahreza, Central Iran. Hallesches Jahrbuch der Geowissenschaften. B18: 73–78
[28]
Kozur H W (2007). Biostratigraphy and event stratigraphy in Iran around the Permian-Triassic Boundary (PTB): Implications for the causes of the PTB biotic crisis. Global Planet Change, 55(1–3): 155–176
CrossRef Google scholar
[29]
Li R C, Gu Y S, Xie S C (2005). The impact on the ecology of lacustrine swamp from the isolated lake and river in the Middle part of Yangtse River. Journal of Central China Normal University(Natural Sciences), 12: 76–79
[30]
Liang H D (2002). End Permian catastrophic event of marine acidification by hydrated sulfuric acid: Mineralogical evidence from Meishan Section of South China. Science Bulletin, 47: 784–788 (in Chinese)
[31]
Luo G M, Huang J H, Xie S C, Wignall P B, Tang X Y, Huang X Y, Yin H F (2010). Relationships between carbon isotope evolution and variation of microbes during the Permian-Triassic transition at Meishan Section, South China. International Journal of Earth Science, 99: 775–784
[32]
Melchin M J, Mitchell C E (1991). Late Ordovician extinction of the Graptoloidea. In: Barnes C R, Williams S H, eds. Advances in Ordovician geology. Geological Survey of Canada Paper 90–9: 143–156
[33]
Nielsen R (2006). The Little Green Handbook: Seven Trends Shaping the Future of Our Planet. New York: Picador, 354 ISBN 0-312-42581-3
[34]
Orr J C, Fabry V J, Aumont O, Bopp L, Doney S C, Feely R A, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key R M, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar R G, Plattner G K, Rodgers K B, Sabine C L, Sarmiento J L, Schlitzer R, Slater R D, Totterdell I J, Weirig M F, Yamanaka Y, Yool A (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059): 681–686
CrossRef Pubmed Google scholar
[35]
Parry M L, Canziani O F, Palutikof J P, van der Linden P J, Hanson C E (2007). Climate change 2007: Impacts, adaptation and vulnerability: contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University Press, 7–22
[36]
Payne J L, Lehrmann D J, Wei J Y, Orchard M J, Schrag D P, Knoll A H (2004). Large perturbations of the carbon cycle during recovery from the end-permian extinction. Science, 305(5683): 506–509
CrossRef Pubmed Google scholar
[37]
Payne J L, Turchyn A V, Paytan A, Depaolo D J, Lehrmann D J, Yu M, Wei J (2010). Calcium isotope constraints on the end-Permian mass extinction. Proc Natl Acad Sci USA, 107(19): 8543–8548
CrossRef Pubmed Google scholar
[38]
Racki G (2003). End-Permian mass extinction: Oceanographic consequences of double catastrophic volcanism. Lethaia, 36(3): 171–173
CrossRef Google scholar
[39]
Rampino M R, Prokoph A, Adler A (2000). Tempo of the end-Permian event: high-resolution cyclostratigraphy at the Permian–Triassic boundary. Geology, 28(7): 643–646
CrossRef Google scholar
[40]
Retallack G J (2001). A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature, 411(6835): 287–290
CrossRef Pubmed Google scholar
[41]
Retallack G J (2002). Carbon dioxide and climate over the past 300Myr. Philosophical Transactoins, Royal Society of London, A, 360: 659–673
[42]
Sandberg P A (1983). An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature, 305: 19–22
[43]
Sepkoski J J (1992). A compendium of fossil marine animal families, 2n ed. Milwaukee Public Museum Contributions in Biology and Geology, 83: 1–156
[44]
Sheldon N D (2006). Abrupt chemical weathering increase across the Permian-Triassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol, 231(3–4): 315–321
CrossRef Google scholar
[45]
Smith F D M, May R M, Pellew R, Johnson T H, Walter K R (1993). How much do we know about the current extinction rate? Trends Ecol Evol, 8(10): 375–378
CrossRef Google scholar
[46]
Sonnerup R E, McNochol A P, Quay P D, Gammon R H, Bullister J L, Sabine C L, Slater R D (2007). Anthropogenic δ13C changes in the North Pacific Ocean reconstructed using a multiparameter mixing approach (MIX). Tellus B Chem Phys Meterol, 59(2): 303–317
CrossRef Google scholar
[47]
Stanley G D (2001). The History and Sedimentology of Ancient Reef Systems. New York: Academic/Plenum Publishers
[48]
Steffen W, Sanderson A, Tyson P, Jager J, Matson P A, Moore III B, Oldfield F, Richardson K, Schellnhuber H J, Turner II B L, Wasson R J (2004). Global change and the Earth system: A planet under pressure: Executive summary of IGBP. Berlin: Springer-Verlag, 40
[49]
Tong J N, Zhang S X, Zuo J X, Xiong X Q (2007). Events during the Early Triassic recovery from the end-Permian extinction. Global Planet Change, 55(1): 66–80
CrossRef Google scholar
[50]
Veizer J, Godderis Y, François L M (2000). Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature, 408(6813): 698–701
CrossRef Pubmed Google scholar
[51]
Visscher H, Brinkhuis H, Dilcher D L, Elsik W C, Eshet Y, Looy C V, Rampino M R, Traverse A (1996). The terminal Paleozoic fungal event: Evidence of terrestrial ecosystem destabilization and collapse. Proc Natl Acad Sci USA, 93(5): 2155–2158
CrossRef Pubmed Google scholar
[52]
Visscher H, Looy C V, Collinson M E, Brinkhuis H, van Konijnenburg-van Cittert J H, Kürschner W M, Sephton M A (2004). Environmental mutagenesis during the end-Permian ecological crisis. Proc Natl Acad Sci USA, 101(35): 12952–12956
CrossRef Pubmed Google scholar
[53]
Wang C J (2007). Anomalous hopane distributions at the Permian–Triassic boundary, Meishan, China: Evidence for the end-Permian marine ecosystem collapse. Org Geochem, 38(1): 52–66
CrossRef Google scholar
[54]
Wang Y B, Tong J N, Wang J S, Zhou X G (2005). Calcimicrobialite after end-Permian mass extinction in South China and its palaeoenvironmental significance. Chin Sci Bull, 50(7): 665–671 (in Chinese)
CrossRef Google scholar
[55]
Ward P D, Montgomery D R, Smith R (2000). Altered river morphology in south africa related to the permian-triassic extinction. Science, 289(5485): 1740–1743
CrossRef Pubmed Google scholar
[56]
Wilson E O (1992). The Diversity of Life. Cambridge: Mass, Belknap Press of Harvard University Press, 468
[57]
Wilson E O (2002). The Future of Life. Vintage: Random House, 229
[58]
Wootton J T, Pfister C A, Forester J D (2008). Dynamical patterns and ecological impacts of changing ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci USA, 105(48): 18848–18853
CrossRef Pubmed Google scholar
[59]
Xie S C, Guo J Q, Huang J H, Chen F, Wang H, Farrimond P (2004a). Restricted utility of 13C of bulk organic matter as a record of paleovegetation in some loess-paleosol sequences in the Chinese Loess Plateau. Quat Res, 62(1): 86–93
CrossRef Google scholar
[60]
Xie S C, Nott C J, Avsejs L A, Maddy D, Chambers F, Evershed R (2004b). Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction. Geochim Cosmochim Acta, 68(13): 2849–2862
CrossRef Google scholar
[61]
Xie S C, Pancost R D, Huang X Y, Jiao D, Lu L, Huang J, Yang F, Evershed R (2007). Molecular and isotopic evidence for episodic environmental change across the Permo/Triassic boundary at Meishan in South China. Global Planet Change, 55(1–3): 56–65
CrossRef Google scholar
[62]
Xie S C, Pancost R D, Yin H F, Wang H, Evershed R P (2005). Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 434(7032): 494–497
CrossRef Pubmed Google scholar
[63]
Yan J X, Wu M (2006). Synchronized osciliations in Phanerozoic chemical composition of seawater, carbonate sedimentation and biotic evolution: progresses and prospects. Geological Science and Technology Information, 25(3): 1–7 (in Chinese with English abstract)
[64]
Yang Z Y, Wu S B, Yin H F, Xu G R, Zhang K X, Bi X M (1993). Permo-Triassic Events of South China. Beijing: Geological Publishing House, 153
[65]
Yin H F, Feng Q L, Lai X L, Baud A, Tong J N (2007). The protracted Permo-Triassic crisis and the multi-episode extinction around the Permian-Triassic boundary. Global Planet Change, 55(1–3): 1–20
CrossRef Google scholar
[66]
Yin H F, Huang S J, Zhang K X, Hansen H J, Yang F Q, Ding M H, Bi X M (1992). The effects of volcanism on the Permo-Triassic mass extinction in South China. In: Sweet W C, Yang Z Y, Dickins J M, Yin H F, eds. Permo-Triassic Events in the Eastern Tethys. Cambridge: Cambridge University Press, 169–174
[67]
Yu J X, Peng Y Q, Zhang S X, Yang F Q, Zhao Q M, Huang Q S (2007). Terrestrial events across the Permian-Triassic boundary along the Yunnan-Guizhou border, SW China. Global Planet Change, 55(1–3): 193–208
CrossRef Google scholar

Acknowledgements

This work is financially supported by the National Natural Science Foundation Program for Innovative Research Team of China (Grant No. 40921062), the National Natural Science Foundation of China (Grant Nos. 40930210, 40872008), and the Ministry of Education of China (NCET-10-0712). Many results of this paper came from fruitful discussions with colleagues of the BGEG Laboratory.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(235 KB)

Accesses

Citations

Detail

Sections
Recommended

/