Fe(II) oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures in the presence of arsenate

Xiaofen YANG , Hongmei WANG , Linfeng GONG , Hima HASSANE , Zhengbo JIANG

Front. Earth Sci. ›› 2009, Vol. 3 ›› Issue (2) : 221 -225.

PDF (205KB)
Front. Earth Sci. ›› 2009, Vol. 3 ›› Issue (2) : 221 -225. DOI: 10.1007/s11707-009-0027-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Fe(II) oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures in the presence of arsenate

Author information +
History +
PDF (205KB)

Abstract

Fe2+ oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures was investigated in batch cultures in the presence of arsenate. The pH value was periodically monitored and Fe2+ content was analyzed by the 1,10-phenanthroline method. ICP-AES was employed for the analysis of As(V) concentration in the solution phase. Precipitates were collected and analyzed by X-ray diffraction. Slight enhancement of iron bio-oxidation was observed in mixed cultures with the two greatest As(V) concentrations (1.0 and 5.0 mg/L As), which were enriched from sediment samples in an abandoned copper mine site. As(V) concentrations decreased with time, indicating either the co-precipitation with or the adsorption by jarosite, the major sink of solid phase. Our data suggest that biogenically synthesized jarosite may play an important role in the attenuation of soluble arsenate in natural aquatic environments.

Keywords

Acidithiobacillus ferrooxidans / arsenate / jarosite / bio-oxidation / geomicrobiology

Cite this article

Download citation ▾
Xiaofen YANG, Hongmei WANG, Linfeng GONG, Hima HASSANE, Zhengbo JIANG. Fe(II) oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures in the presence of arsenate. Front. Earth Sci., 2009, 3(2): 221-225 DOI:10.1007/s11707-009-0027-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alpers C N, Nordstrom D K, Ball J W (1989). Solubility of jarosite solid solutions precipitated from acid mine waters, Iron Mountain, California, USA. Sci Géol Bull, 42: 281-298

[2]

Bigham J M, Schwertmann U, Traina, S J, Winland R L, Wolf M (1996). Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta, 60: 2111-2121

[3]

Butcher B G, Deane S M, Rawlings D E (2000). The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol, 66: 1826-1833

[4]

Collinet M N, Morin D (1990). Characterization of arsenopyrite oxidizing Thiobacillus.Tolerance to arsenite, arsenate, ferrous and ferric iron. Antonie van Leeuwenhoek, 57: 237-244

[5]

Dave S R, Gupta K H, Tipre D R (2008). Characterization of arsenic resistant and arsenopyrite oxidizing Acidithiobacillus ferrooxidans from Hutti gold leachate and effluents. Bioresource Technology, 99: 7514-7520

[6]

Duquesne K, Lebrun S, Casiot C, Bruneel O, Personné J-C, Leblanc M, Elbaz-Poulichet F, Morin G, Bonnefoy V (2003). Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Appl Environ Microbiol, 69: 6165-6173

[7]

Dutrizac J E, Jambor J L (1987). The behavior of arsenic during jarosite precipitation: arsenic precipitation at 97 oC from sulfate or chloride media. Can Metall Q, 26: 91-101

[8]

Ehrlich H L (1963). Bacterial action on orpiment. Econ Geol, 58: 991-994

[9]

Ehrlich H L (1964). Bacterial oxidation of arsenopyrite and enargite. Econ Geol, 59: 1306-1312

[10]

Fuller C C, Davis J A, Waychunas G A (1993). Surface chemistry of ferrihydrite: part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim Cosmochim Acta, 57: 2271-2282

[11]

Gieré R, Sidenko N V, Lazareva E V (2003). The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Appl Geochem, 18: 1347-1359

[12]

Hutchins S R, Davidson M S, Brierley J A, Brierley C L (1986). Microorganisms in reclamation of metals. Annu Rev Microbiol, 40: 311-336

[13]

Leduc L G, Ferroni G D (1994). The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol Revs, 14: 103-119

[14]

Mamtaz R, Bache D H (2001). Reduction of arsenic in groundwater by coprecipitation with iron. J Water Supply Res Technol, 50: 313-324

[15]

Mandl M, Matulova P, Docekalova H (1992). Migration of AsIII during bacterial oxidation of arsenopyrite in chalcopyrite concentrates by Thiobacillus ferrooxidans. Appl Microbiol Biotechnol, 38: 429-431

[16]

Morin G, Juillot F, Casiot C, Bruneel O, Personné J-C, Elbaz-Poulichet F, Leblanc M, Ildefonse P, Calas G (2003). Bacterial formation of tooeleite and mixed As(III)/(V)-Fe(III) gels in the Carnoulés acid mine drainage, France. A XANES, XRD and SEM study. Environ Sci Technol, 37: 1705-1712

[17]

Pichler T, Veizer J, Hall G E M (1999). Natural input of arsenic into a coral-reef ecosystem by hydrothermal fluids and its removal by Fe(III) oxyhydroxides. Environ Sci Technol, 33: 1373-1378

[18]

Riveros P A, Dutrizac J E, Spencer P (2001). Arsenic disposal practices in the metallurgical industry. Can Metall Q, 40: 395-420

[19]

Savage K S, Bird D K, Ashley R P (2000). Legacy of the California gold rush: environmental geochemistry of arsenic in the southern Mother Lode Gold District. Int Geol Rev, 42: 385-415

[20]

Savage K S, Bird D K, O’Day P A (2005). Arsenic speciation in synthetic jarosite. Chem Geol, 215: 473-498

[21]

Tahija D, Huang H H (2000). Factors influencing arsenic coprecipitation with ferric hydroxide. In: Young C, ed. Proceeding of Minor Elements 2000: Processing and Environmental Aspects of As, Sb, Se, Te, and Bi, Society for Mining, Metallurgy, and Exploration. Littleton CO, 149-155

[22]

Tuovinen O H, Niemelä S I, Gyllenberg H G (1971). Tolerance of Thiobacillus ferrooxidans to some metals. Antonie van Leeuwenhoek, 37: 489-496

[23]

Vogel A I (1989). Vogel’s Textbook of Quantitive Chemical Analysis. 5th ed. London: London Group Ltd

[24]

Wang C, Ma S, Lu A (2006a). A preliminary study on the Cr(Ⅳ) removing from wastewater by precipitation of jarosite group minerals. Bulletin of Mineralogy, Petrology and Geochemistry, 25(4): 335-338(in Chinese with English abstract)

[25]

Wang H, Bigham J M, Tuovinen O H (2006b). Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms. Mater Sci Eng, 26: 588-592

[26]

Waychunas G A, Rea B A, Fulle C C, Davis J A (1993). Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim Cosmochim Acta, 57: 2251-2269

[27]

Xu H, Yan W, Liu Z, Luo X, Wang Z (1995). Construction of antiarsenical vector and expression in Thiobacillus ferrooxidans. Chin J Appl Environ Biol, 1: 238-243 (in Chinese with English abstract)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (205KB)

898

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/