Satellite remote sensing applications for surface soil moisture monitoring: A review

Lingli WANG, John J. QU

PDF(201 KB)
PDF(201 KB)
Front. Earth Sci. ›› 2009, Vol. 3 ›› Issue (2) : 237-247. DOI: 10.1007/s11707-009-0023-7
REVIEW ARTICLE
REVIEW ARTICLE

Satellite remote sensing applications for surface soil moisture monitoring: A review

Author information +
History +

Abstract

Surface soil moisture is one of the crucial variables in hydrological processes, which influences the exchange of water and energy fluxes at the land surface/atmosphere interface. Accurate estimate of the spatial and temporal variations of soil moisture is critical for numerous environmental studies. Recent technological advances in satellite remote sensing have shown that soil moisture can be measured by a variety of remote sensing techniques, each with its own strengths and weaknesses. This paper presents a comprehensive review of the progress in remote sensing of soil moisture, with focus on technique approaches for soil moisture estimation from optical, thermal, passive microwave, and active microwave measurements. The physical principles and the status of current retrieval methods are summarized. Limitations existing in current soil moisture estimation algorithms and key issues that have to be addressed in the near future are also discussed.

Keywords

surface soil moisture / monitoring / satellite / remote sensing

Cite this article

Download citation ▾
Lingli WANG, John J. QU. Satellite remote sensing applications for surface soil moisture monitoring: A review. Front Earth Sci Chin, 2009, 3(2): 237‒247 https://doi.org/10.1007/s11707-009-0023-7

References

[1]
Angstrom A (1925). The albedo of various surfaces of ground. Geografiske Annales, 7: 323
CrossRef Google scholar
[2]
Asner G P (1998). Biophysical and biochemical sources of variability. Remote Sens Environ, 76: 173-180
[3]
Beckmann P, Spizzichino A (1963). The Scattering of Electromagnetic Waves from Rough Surfaces. New York: Pergamon Press
[4]
Ben-Dor E, Irons J R, Epema G F (1999). Soil reflectance. In: Rencz A N, ed. Remote Sensing for the Earth Sciences: Manual of Remote Sensing. New York: Wiley & Sons, 111-188
[5]
Betts A K, Ball J H, Baljaars A C M, Miller M J, Viterbo P (1994). Coupling Between Land-Surface, Boundary-Layer Parameterizations and Rainfall on Local and Regional Scales: Lessons from the Wet Summer of 1993. Fifth Conf. on Global Change Studies: American Meteor Soc. Nashville, 174-181
[6]
Bowers S A, Hanks R J (1965). Reflection of radiant energy from soils. Soil Science, 100 (3): 130-138
[7]
Bowers S A, Smith S J (1972). Spectrophotometric determination of soil water content. Soil Science Society of America Proceedings, 36: 978-980
[8]
Carlson T, Gillies R, Perry E (1994). A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Reviews, 9: 161-173
[9]
Chauhan N S (2003). Spaceborn soil moisture estimation at high resolution: a microwave-optical/IR synergistic approach. INT J Remote Sensing, 24(22): 4599-4622
CrossRef Google scholar
[10]
Chen K, Yen S, Huang W (1995). A simple model for retrieving bare soil moisture from radar-scattering coefficients. Remote Sensing of the Environment, 54: 121-126
CrossRef Google scholar
[11]
Chen K S, Wu T D, Tsang L, Li Q, Shi J, Fung A K (2003). The emission of rough surfaces calculated by the integral equation method with a comparison to a three-dimensional moment method simulations. IEEE Trans Geosci Remote Sens, 41: 90-101
CrossRef Google scholar
[12]
Choudhury B J, Golus R E (1988). Estimating soil wetness using satellite data. International Journal of Remote Sensing, 9: 1251-1257
CrossRef Google scholar
[13]
Choudhury B J, Schmugge T J, Chang A, Newton R W (1979). Effect of surface roughness on the microwave emission from soil. J Geophys Res, 84: 5699-5706
CrossRef Google scholar
[14]
Choudhury B J, Tucker C J, Golus R E, Newcomb W W (1987). Monitoring vegetation using Nimbus-7 scanning multichannel microwave radiometer’s data. International Journal of Remote Sensing, 8(3): 533-538
CrossRef Google scholar
[15]
Claps P, Laguardia G (2004). Assessing spatial variability of soil water content through Thermal Inertia and NDVI. In: Owe M, D'Urso G, Moreno J F, Calera A, eds. Remote Sensing for Agriculture, Ecosystems, and Hydrology V. Proceedings of SPIE, Bellingham, SPIE, 5232: 378-387
[16]
Crosson W L, Limaye A S, Laymon C A (2005). Parameter sensitivity of soil moisture retrievals from airborne C- and X-band radiometer measurements in SMEX02. Geoscience and Remote Sensing, IEEE Transactions, 43(12): 2842-2853
[17]
Curcio J A, Petty C C (1951). The near infrared absorption spectrum of liquid water. Journal of the Optical Society of America, 41 (5): 302-304
[18]
Curran P J (1985). Principles of Remote Sensing. Longman Scientific and Technical, UK, 282
[19]
Czajkowski K, Goward S N, Stadler S J, Waltz A (2000). Thermal remote sensing of near surface environmental variables: application over the Oklahoma Mesonet. Professional Geographer, 52: 345-357
CrossRef Google scholar
[20]
Dalal, Henry (1986). Simultaneous determination of moisture, organic carbon, and total nitrogen by infrared reflectance spectrometry. Soil Science Society of America Journal, 50: 120-123
[21]
Dasgupta S (2007). Remote sensing techniques for vegetation moisture and fire risk estimation. Ph.D. dissertation, George Mason University, Virginia, United States
[22]
de Troch F P, Troch P A, Su Z, Lin D S (1996). Chapter 9: Application of Remote Sensing for Hydrological Modelling. In: Abbott M B, Refsgaard J C, eds. Distributed Hydrological Modelling. Dordrecht: Kluwer Academic Publishers
[23]
Dobson M C, Ulaby F T, Hallikainen M T, El-Rayes M A (1985). Microwave Dielectric Behaviour of Wet Soil- Part II: Dielectric Mixing Models. IEEE Trans Geosci Rem Sens, GE-23(1): 35-46
CrossRef Google scholar
[24]
Dubois P, van Zyl J (1994). An Empirical Soil moisture Estimation Algorithm Using Imaging Radar. Proceedings of IGARSS'94, IEEE, 1573-1575
[25]
Dubois P, van Zyl J J, Engman T (1995). Measuring soil moisture with imaging radars. IEEE Trans Geosci Remote Sensing, GE-33: 915-926
CrossRef Google scholar
[26]
Dupigny-Giroux L, Lewis J E (1999). A moisture index for surface characterization over a semiarid area. Photogrammetric Engineering and Remote Sensing, 65: 937-946
[27]
D'Ursoa G, Minacapillib M (2006). A semi-empirical approach for surface soil water content estimation from radar data without a-priori information on surface roughness. Journal of Hydrology, 321: 297-310
CrossRef Google scholar
[28]
Eagleman J R, Lin W C (1976). Remote sensing of soil moisture by a 21 cm passive radiometer. Journal of Geophysical Research, 81: 3660-3666
CrossRef Google scholar
[29]
Engman E T (1990). Progress in microwave remote sensing of soil moisture. Canadian Journal of Remote Sensing, 16(3): 6-14
[30]
Engman E T (1991). Application of microwave remote sensing of soil moisture for water resources and agriculture. Remote Sensing of Environment, 35: 213-226
CrossRef Google scholar
[31]
Engman E T (1992). Soil Moisture Needs in Earth Sciences. In: Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS), 477-479
[32]
Engman E T, Chauhan N (1995). Status of microwave soil moisture measurements with remote sensing. Remote Sensing of Environment, 51, 189-198
CrossRef Google scholar
[33]
Entekhabi D, Nakamura H, Njoku E G (1993). Retrieval of soil moisture by combined remote sensing and modeling. In: Choudhury B J, Kerr Y H, Njoku E G, Pampaloni P, eds. ESA/NASA International Workshop on Passive Microwave Remote Sensing Research Related to Land-Atmosphere Interactions, St. Lary, France, 485-498
[34]
Fast J D, McCorcle M D (1991). The effect of heterogenous soil moisture on a summer baroclinic circulation in the central United States. Mon Wea Rev, 119: 2140-2167
CrossRef Google scholar
[35]
Friedl M A, Davis F W (1994). Sources of variation in radiometric surface temperature over a tall-grass prairie. Remote Sensing of Environment, 48: 1-17
CrossRef Google scholar
[36]
Fung A K (1994). Microwave Scattering and Emission Models and Their Applications. Artech House, Norwood, MA
[37]
Fung A K, Li Z, Chen K S (1992). Backscattering from a randomly rough dielectric surface. IEEE Trans Geosci Remote Sensing, 30(2): 356-369
[38]
Gillies R R, Carlson T N (1995). Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into mesoscale prediction models. J Appl Meteorol, 34: 745-756
CrossRef Google scholar
[39]
Gillies R, Carlson T, Kustas W, Humes K (1997). A verification of the “triangle” method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature. Int J Remote Sens, 18: 3145-3166
CrossRef Google scholar
[40]
Ishida T, Ando H, Fukuhara M (1991). Estimation of complex refractive index of soil particles and its dependence on soil chemical properties. Remote Sens. Environ, 38:173-182
CrossRef Google scholar
[41]
Jackson R D, Idso S B, Reginato R J (1976). Calculation of evaporation rates during the transition from energy-limiting to soil-limiting phases using Albedo data. Water Resour Res, 12(1): 23-26
CrossRef Google scholar
[42]
Jackson T J (1993). III measuring surface soil moisture using passive microwave remote sensing. Hydrol Processes, 7: 139-152
CrossRef Google scholar
[43]
Jackson T J, Schmugge T J (1991). Vegetation effects on the microwave emission of soils. Remote Sens Environ, 36: 203-212
CrossRef Google scholar
[44]
Jackson T J, Hawley M E, O’Neill P E (1987). Preplanting soil moisture using passive microwave sensors. Water Resources Bulletin, 23(1): 11-19
[45]
Jackson T J, Le Vine D M, Hsu A Y, Oldak A, Starks P J, Swift C T, Isham J, Haken M (1999). Soil moisture mapping at regional scales using microwave radiometry: The Southern Great Plains hydrology experiment. IEEE Trans Geosci Remote Sens, 27: 2136-2151
CrossRef Google scholar
[46]
Jackson T J, Le Vine D M, Swift C T, Schmugge T J, Schiebe F R (1995). Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita ’92. Remote Sensing of Environment, 53: 27-37
CrossRef Google scholar
[47]
Jackson T J, Schmugge T J, Wang J R (1982). Passive microwave sensing of soil moisture under vegetation canopies. Water Resources Research, 18: 1137-1142
CrossRef Google scholar
[48]
Kite G W, Pietroniro A (1996). Remote sensing applications in hydrological modelling. Hydrological Sciences Journal, 41(4): 563-591
[49]
Kustas W P, Moran M S, Norman J M (2003). Evaluating the spatial distribution of evaporation. Chap. 26. In: eds. Potter T D, Colman B R. Handbook of Weather, Climate and Water: Atmospheric Chemistry, Hydrology and Societal Impacts. Hoboken, N J: John Wiley & Sons, Inc, 461-492
[50]
Lambin E F, Ehrlich D (1996). The surface temperature-vegetation index space for land cover and land-cover change analysis. International Journal of Remote Sensing, 17: 463-487
CrossRef Google scholar
[51]
Leone A P, Sommer S (2000). Multivariate analysis of laboratory spectra for the assessment of soil development and soil degradation in the southern apennines. Remote Sensing of Environment, 72: 346-359
CrossRef Google scholar
[52]
Liu W, Baret F, Gu X, Tong Q, Zheng L, Zhang B (2002). Relating soil surface moisture to reflectance. Remote sensing of environment, 81: 238-246
CrossRef Google scholar
[53]
Liu W, Baret F, Gu X, Zhang B, Tong Q, Zheng L (2003). Evaluation of methods for soil surface moisture estimation from reflectance data, international journal of remote sensing, 24(10): 2069-2083
[54]
Lobell D B, Asner G P (2002). Moisture effects on soil reflectance. Soil Sci Soc Am J. 66: 722-727
[55]
Meesters G C, de Jeu R A, Owe M (2005). Analytical derivation of the vegetation optical depth from the microwave polarization difference index. IEEE Geosci and Remote Sensing Letters, 2(2): 121-123
CrossRef Google scholar
[56]
Mo T, Choudhury B J, Schmugge T J, Wang J R, Jackson T J (1982). A model for microwave emission from vegetation-covered fields. Journal of Geophysical Research, 87: 11.229-11.237
[57]
Mo T, Schmugge T J (1987). A parameterization of the effect of surface roughness on microwave emission. IEEE Trans Geosci Remote Sens, GE-25: 47-54
CrossRef Google scholar
[58]
Moran M S, Clarke T R, Inoue Y, Vidal A (1994). Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 49: 246-263
CrossRef Google scholar
[59]
Moran M S, Watts J M, Peters-Lidard C D, McElroy S A (2004). Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Canadian Journal of Remote Sensing, 30(5): 805-826
[60]
Nemani R, Pierce L, Running S N, Goward S N (1993). Developing satellite-derived estimates of surface moisture status. Journal of Applied Meteorology, 32: 548-557
CrossRef Google scholar
[61]
Njoku E G, Entekhabi D (1996). Passive microwave remote sensing of soil moisture. J Hydrol, 184: 101-129
CrossRef Google scholar
[62]
Njoku E G, Jackson T J, Lakshmi V, Chan T, Nghiem S V (2003). Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Remote Sens, 41: 215-229
CrossRef Google scholar
[63]
Njoku E G, Kong J A (1977). Theory for passive microwave remote sensing of near-surface soil moisture. J Geophys Res, 82(20): 3108-3118
CrossRef Google scholar
[64]
Njoku E G, Li L (1999). Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz. IEEE Trans Geosci Remote Sens, 30: 79-93
CrossRef Google scholar
[65]
Njoku E G, Wilson W J, Yueh S H, Dinardo S J, Li F K, Jackson T J, Lakshmi V, Bolten J (2002). Observations of soil moisture using a passive and active low-frequency microwave airborne sensor during SGP99. IEEE Trans Geosci Remote Sens, 40 (12): 2659-2673
CrossRef Google scholar
[66]
Oh Y, Sarabandi K, Ulaby F T (1992). An empirical model and an inversion technique for radar scattering from bare soil surface. IEEE Trans Geosci Remote Sensing, 30 (2): 370-381
CrossRef Google scholar
[67]
Owe M, de Jeu R, Walker J (2001). A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans Geosci Remote Sens, 39: 1643-1654
CrossRef Google scholar
[68]
Price J C (1980). The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation. Water Resources Research, 16: 787-795
CrossRef Google scholar
[69]
Prigent C, Wigneron J P, Rossow W B, Pardo-Carrion J R (2000). Frequency and angular variations of land surface microwave emissivities: Can we estimate SSM/T and AMSU emissivities from SSM/I emissivities? IEEE Trans Geosci Remote Sens, 38: 2373-2386
CrossRef Google scholar
[70]
Prihodko L, Goward S N (1997). Estimation of air temperature from remotely sensed surface observations. Remote Sensing of Environment, 60: 335-346
CrossRef Google scholar
[71]
Pulliainen J, Karna J P, Hallikainen M (1993). Development of geophysical retrieval algorithms for the MIMR. IEEE Trans Geosci Remote Sens, 31(1): 268-277
CrossRef Google scholar
[72]
Rice S O (1951). Reflection of electromagnetic wave from slightly rough surfaces. Commun. Pure Appl Mathem, 4: 351-378
CrossRef Google scholar
[73]
Sadeghi A M, Hancock G D, Waite W P, Scott H D, Rand J A (1984). Microwave measurements of moisture distributions in the upper soil profile. Water Resour Res, 20(7): 927-934
CrossRef Google scholar
[74]
Saha S K (1995). Assesment of regional soil moisture conditions by coupling satellite sensor data with a soil-plant system heat and moisture balance model. Int J Rem Sens, 16(5): 973-980
CrossRef Google scholar
[75]
Sandholt I, Rasmussen K, Andersen J (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79: 213-224
CrossRef Google scholar
[76]
Schlesinger W H, Raikes J A, Cross A F (1996). On the spatial pattern of soil nutrients in desert ecosystems. Ecology, 77: 364-376
CrossRef Google scholar
[77]
Schmugge T J (1978). Remote sensing of surface soil moisture. J Appl Meteor, 17: 1549-1557
CrossRef Google scholar
[78]
Schmugge T J (1983). Remote sensing of soil moisture: recent advances. IEEE Trans Geosci Remote Sens, GE-21: 336-344
CrossRef Google scholar
[79]
Schmugge T J, Jackson T J (1994). Mapping soil moisture with microwave radiometers. Meteorol Atmos Phys, 54: 213-223
CrossRef Google scholar
[80]
Schmugge T J, Jackson T J, McKim H L (1980). Survey of soil moisture determination. Water Resources Research, 16: 961-979
CrossRef Google scholar
[81]
Shi J, Chen K S, Li Q, Jackson T J, O’Neill P E, Tsang L (2002). A parameterized surface reflectivity model and estimation of bare surface soil moisture with L-band radiometer. IEEE Trans Geosci Remote Sens, 40: 2674-2686
CrossRef Google scholar
[82]
Shi J, Jiang L, Zhang L, Chen K, Wigneron J, Chanzy A (2005). A Parameterized Multifrequency-polarization Surface Emission Model. IEEE Trans Geosci Remote Sens, 43: 2831-2841
CrossRef Google scholar
[83]
Shi J C, Wang J, Hsu A, O’Neill P E, Engman E T (1995). Estimation of soil moisture and surface roughness parameters using L-band SAR measurements. Proc. IEEE Trans Geosci Remote Sens, I, 507-509
[84]
Shoshany M, Svoray T, Curran P J, Foody G M, Perevolotsky A (2000). The relationship between ERS-2 SAR backscatter and soil moisture: generalization from a humid to semi-arid transect. International Journal of Remote Sensing, 21: 2337-2343
CrossRef Google scholar
[85]
Smith R C G, Choudhury B J (1991). Analysis of normalized difference and surface temperature observations over southeastern Australia. International Journal of Remote Sensing, 12: 2021-2044.
CrossRef Google scholar
[86]
Sommer S, Hill J, Me?gier J (1998). The potential of remote sensing for monitoring rural land use changes and their effects on soil conditions. Agriculture Ecosystems and Environment, 67: 197-209
CrossRef Google scholar
[87]
Stoner E R, Baumgardner M F (1980). Physiochemical, site and bidirectional reflectance factor characteristics of uniformly moist soils (111679, LARS, Purdue University, USA)
[88]
Su Z, Troch P A, de Troch F P, Nochtergale L, Cosyn B (1995). Preliminary Results of Soil Moisture Retrieval From ESAR (EMAC 94) and ERS-1/SAR, Part II: Soil Moisture Retrieval. In: de Troch F P, Troch P A, Su Z, Cosyn B, eds. Proceedings of the second workshop on hydrological and microwave scattering modelling for spatial and temporal soil moisture mapping from ERS-1 and JERS-1 SAR data and macroscale hydrologic modeling (EV5V-CT94-0446). Institute National de la Recherche Agronomique, Unité de Science du Sol et de Bioclimatologie, France, 7-19
[89]
Theis S W, Blanchard B J, Newton R W (1984). Utilization of vegetation indices to improve microwave soil moisture estimates over agricultural lands. IEEE Trans Geosci Remote Sens, 22: 490-496
[90]
Topp G C, Davis J L, Annan A P (1980). Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines. Water Resour Res, 16(3): 574-582
CrossRef Google scholar
[91]
Tramutoli V, Claps P, Marella M, Pergola N, Sileo C (2000). Feasibility of hydrological application of thermal inertia from remote sensing. 2nd Plinius Conference on Mediterranean Storms, Siena, Italy, 16-18October, 2000
[92]
Ulaby F T, Dubois P C, van Zyl J (1996). Radar mapping of surface soil moisture. J Hydrol, 184: 57-84
CrossRef Google scholar
[93]
Ulaby F T, Moore R K, Fung A K (1986). Microwave Remote Sensing—Active and Passive. Norwood, MA: Artech House, vol III
[94]
van de Griend A A, Engman E T (1985). Partial Area Hydrology and Remote Sensing. J Hydrol, 81: 211-251
CrossRef Google scholar
[95]
van de Griend A A, Wigneron J P (2004). The factor b as a function of frequency and canopy type at H-Polarization. IEEE Trans Geosci Remote Sens, 42(4): 786-794
[96]
Verstraeten W W, Veroustraete F, van der Sande C J, Grootaers I, Feyen J (2006). Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote Sensing of Environment, 101: 299-314
CrossRef Google scholar
[97]
Walker J (1999). Estimating Soil Moisture Profile Dynamics from Near-Surface Soil Moisture Measurements and Standard Meteorological Data. Ph.D. dissertation, The University of Newcastle, Australia
[98]
Walker J, Houser P, Willgoose G (2004). Active microwave remote sensing for soil moisture measurement: a field evaluation using ERS-2. Hydrol Process, 18: 1975-1997
[99]
Wang J R, Choudhury B J (1981). Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency. J Geophys Res, 86: 5277-5282
CrossRef Google scholar
[100]
Wang J R, Choudhury B J (1995). Passive microwave radiation from soil: Examples of emission models and observations. In: Choudhury B, Kerr Y, Njoku E, Pampaloni P, eds. Passive microwave remote sensing of land-atmosphere interactions, VSP, Utrecht, The Netherlands
[101]
Wang J R, O’Neill P E, Jackson T J, Engman E T (1983). Multifrequency measurements of the effects of soil moisture, soil texture, and surface roughness. IEEE Trans Geosci Remote Sens, GE-21(1): 44-51
[102]
Wang L, Qu J J (2007). NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophysical Research Letters, 34: L20405. doi:10.1029/ 2007GL031021
CrossRef Google scholar
[103]
Wang L, Qu J J, Hao X (2008). Forest fire detection using the normalized multi-band drought index (NMDI) with satellite measurements. Agricultural and Forest Meteorology, 148(11): 1767-1776
CrossRef Google scholar
[104]
Wang L, Qu J J, Zhang S, Hao X, Dasgupta S (2007). Soil moisture estimation using EOS MODIS and ground measurements in the Eastern China. International Journal of Remote Sensing, 28: 1413-1418
CrossRef Google scholar
[105]
Wang X, Zhang Z (2005). A Review: Theories, Methods and Development of Soil Moisture Monitoring by Remote Sensing. Proceedings of IGARSS '05, 4505-4507
[106]
Wegmüller U, Mätzler C (1999). Rough bare soil reflectivity model. IEEE Trans Geosci Remote Sens, 37: 1391-1395
CrossRef Google scholar
[107]
Wigneron J P, Calvet J C, Pellarin T, van de Griend A, Ferrazzoli P (2003). Retrieving near-surface soil moisture from microwave radiometric observations: Current status and future plans. Rem Sens Envir, 85: 489-506
CrossRef Google scholar
[108]
Wigneron J P, Calvet J C, de Rosnay P, Kerr Y, Waldteufel P, Saleh K, Escorihuela M J, Kruszewski A (2004). Soil moisture retrievals from biangular L-band passive microwave observations. Geoscience and Remote Sensing Letters, IEEE, 1: 277-281
CrossRef Google scholar
[109]
Wigneron J P, Laguerre L, Kerr Y H (2001). A simple parameterization of the L-band microwave emission from rough agricultural soil. IEEE Trans Geosci Remote Sens, 39:1697-1707
CrossRef Google scholar
[110]
Wood E F, Lettenmaier D P, Zartarian V G (1992). A Land-Surface Hydrology Parameterization With Subgrid Variability for General Circulation Models. J Geophys Res, 97(D3): 2717-2728
[111]
Wuthrich M (1994). ERS-1 SAR compared to thermal infrared to estimate surface soil moisture. Proceedings of the 21st Conference on Agricultural and Forest Meteorology, American Meteorological Society, San Diego, 197-200
[112]
Xue H, Ni S (2006). Progress in the study on monitoring of soil moisture with thermal infrared remote sensing. Agricultural Research in the Arid Areas, 24: 168-172
[113]
Zhan X, Miller S, Chauhan N, Di L, Ardanuy P, Running S (2002). Soil Moisture Visible/Infrared Imager/Radiometer Suite Algorithm Theoretical Basis Document, Version 5

Acknowledgements

This work was supported by the UCAR/COMET Outreach Award S08-68897 to Prof. J. Qu.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(201 KB)

Accesses

Citations

Detail

Sections
Recommended

/