Jun 2018, Volume 5 Issue 2

  • Select all

    This paper is an invited request to describe the main research challenges in the domain of resource-constrained project scheduling. The paper is split up in three parts. In today’s challenges, research endeavors that have received a significant, but still not enough, attention have been described. In tomorrow’s research challenges, some promising research avenues for future research have been given. Finally, in yesterday’s challenge, a research topic that started decades ago, is said to have still a huge potential in tomorrow’s research agenda. This paper does not intend to give a full literature overview, nor a summary of all possible research paths. Instead, it is inspired from the author’s experience in academic research and practical consultancy and it serves as a personal opinion on a non-exhaustive set of promising research avenues, rather than giving a full literature-based advice for future research directions.

    Lynda M. BOURNE, Patrick WEAVER

    Getting the right people in the right place at the right time has always been a major organizational challenge. In ancient times this process seems to have been accomplished based on the scheme of arrangements being contained in the leader’s mind and instructions communicated verbally. Modern approaches to solving the twin challenges of first thinking through the ‘plan’ and then communicating the plan to the people who need to do ‘the right work, at the right time, in the right place’ use sophisticated graphics, charts, diagrams, and computations. This paper traces the development of the concepts most project managers take for granted including bar charts and critical path schedules from their origins (which are far earlier than most people think) through to the modern day. The first section of the paper looks at the development of concepts that allow the visualization of time and other data. The second looks at the shift from static representations to dynamic modeling through the emergence of computers, dynamic calculations and integrated data from the 1950s to the present time.

    Nuri BASOGLU, Muge GOKEN, Marina DABIC, Dilek OZDEMIR GUNGOR, Tugrul U. DAIM

    This study explores the use of augmented reality smart glasses (ARSGs) by physicians and their adoption of these products in the Turkish medical industry. Google Glass was used as a demonstrative example for the introduction of ARSGs. We proposed an exploratory model based on the technology acceptance model by Davis. Exogenous factors in the model were defined by performing semi-structured in-depth interviews, along with the use of an expert panel in addition to the technology adoption literature. The framework was tested by means of a field study, data was collected via an Internet survey, and path analysis was used. The results indicate that there were a number of factors to be considered in order to understand ARSG adoption by physicians. Usefulness was influenced by ease of use, compatibility, ease of reminding, and speech recognition, while ease of use was affected by ease of learning, ease of medical education, external influence, and privacy. Privacy was the only negative factor that reduced the perceived ease of use, and was found to indirectly create a negative attitude. Compatibility emerged as the most significant external factor for usefulness. Developers of ARSGs should pay attention to healthcare-specific requirements for improved utilization and more extensive adoption of ARSGs in healthcare settings. In particular, they should focus on how to increase the compatibility of ARSGs. Further research needs to be conducted to explain the adoption intention of physicians.

    Donald KENNEDY, Simon P. PHILBIN

    Machine intelligence is increasingly entering roles that were until recently dominated by human intelligence. As humans now depend upon machines to perform various tasks and operations, there appears to be a risk that humans are losing the necessary skills associated with producing competitively advantageous decisions. Therefore, this research explores the emerging area of human versus machine decision-making. An illustrative engineering case involving a joint machine and human decision-making system is presented to demonstrate how the outcome was not satisfactorily managed for all the parties involved. This is accompanied by a novel framework and research agenda to highlight areas of concern for engineering managers. We offer that the speed at which new human-machine interactions are being encountered by engineering managers suggests that an urgent need exists to develop a robust body of knowledge to provide sound guidance to situations where human and machine decisions conflict. Human-machine systems are becoming pervasive yet this research has revealed that current technological approaches are not adequate. The engineering insights and multi-criteria decision-making tool from this research significantly advance our understanding of this important area.

    Gang FU, Pedro A. Castillo CASTILLO, Vladimir MAHALEC

    In this work, we examine the impact of crude distillation unit (CDU) model errors on the results of refinery-wide optimization for production planning or feedstock selection. We compare the swing cut+ bias CDU model with a recently developed hybrid CDU model (Fu et al., 2016). The hybrid CDU model computes material and energy balances, as well as product true boiling point (TBP) curves and bulk properties (e.g., sulfur % and cetane index, and other properties). Product TBP curves are predicted with an average error of 0.5% against rigorous simulation curves. Case studies of optimal operation computed using a planning model that is based on the swing cut+ bias CDU model and using a planning model that incorporates the hybrid CDU model are presented. Our results show that significant economic benefits can be obtained using accurate CDU models in refinery production planning.

    Marcel JOLY, Darci ODLOAK, Mario Y. MIYAKE, Brenno C. MENEZES, Jeffrey D. KELLY

    Understanding the holistic relationship between refinery production scheduling (RPS) and the cyber-physical production environment with smart scheduling is a new question posed in the study of process systems engineering. Here, we discuss state-of-the-art RSPs in the crude-oil refining field and present examples that illustrate how smart scheduling can impact operations in the high-performing chemical process industry. We conclude that, more than any traditional off-the-shelf RPS solution available today, flexible and integrative specialized modeling platforms will be increasingly necessary to perform decentralized and collaborative optimizations, since they are the technological alternatives closer to the advanced manufacturing philosophy.

    Stefan JANAQI, Mériam CHÈBRE, Guillaume PITOLLAT

    The empirical Complex Model developed by the US Environmental Protection Agency (EPA) is used by refiners to predict the toxic emissions of reformulated gasoline with respect to gasoline properties. The difficulty in implementing this model in the blending process stems from the implicit definition of Complex Model through a series of disjunctions assembled by the EPA in the form of spreadsheets. A major breakthrough in the refinery-based Complex Model implementation occurred in 2008 and 2010 through the use of generalized disjunctive and mixed-integer nonlinear programming (MINLP). Nevertheless, the execution time of these MINLP models remains prohibitively long to control emissions with our online gasoline blender. The first objective of this study is to present a new model that decreases the execution time of our online controller. The second objective is to consider toxic thresholds as hard constraints to be verified and search for blends that verify them. Our approach introduces a new way to write the Complex Model without any binary or integer variables. Sigmoid functions are used herein to approximate step functions until the measurement precision for each blend property is reached. By knowing this level of precision, we are able to propose an extremely good and differentiable approximation of the Complex Model. Next, a differentiable objective function is introduced to penalize emission values higher than the threshold emissions. Our optimization module has been implemented and tested with real data. The execution time never exceeded 1 s, which allows the online regulation of emissions the same way as other traditional properties of blended gasoline.

    Bahaa Eddine MNEYMNEH, Mohamad ABBAS, Hiam KHOURY

    Construction is considered among the most dangerous industries and is responsible for a large portion of total worker fatalities. A construction worker has a probability of 1-in-200 of dying on the job during a 45-year career, mainly due to fires, falls, and being struck by or caught between objects. Hence, employers must ensure their workers wear personal protective equipment (PPE), in particular hardhats, if they are at risk of falling, being struck by falling objects, hitting their heads on static objects, or coming in proximity to electrical hazards. However, monitoring the presence and proper use of hardhats becomes inefficient when safety officers must survey large areas and a considerable number of workers. Using images captured from indoor jobsites, this paper evaluates existing computer vision techniques, namely object detection and color-based segmentation tools, used to rapidly detect if workers are wearing hardhats. Experiments are conducted and the results highlight the potential of cascade classifiers, in particular, to accurately, precisely, and rapidly detect hardhats under different scenarios and for repetitive runs, and the potential of color-based segmentation to eliminate false detections.

    Yuanxin ZHANG, Abdol CHINI, R. Edward MINCHIN Jr., Lourdes PTSCHELINZEW, Dev SHAH

    The conventional Design-Bid-Build (DBB) construction contracting method has had various drawbacks exposed in highway construction practice, including lack of communication, inefficient design, antagonizing relationships, and increased disputes. To mitigate the negative aspects of DBB, several alternative contracting methods and alternative project delivery systems have been devised and introduced to the industry over the past 30 years. Five such innovations were tested by a research team from the University of Florida under the sponsorship of the Florida Department of Transportation (FDOT). To perform a realistic assessment, this study categorized FDOT projects built between 2006 and 2015 into groups according to current contract amounts. Both absolute and relative metrics were defined and employed. For comparison purposes, a collective analysis on all gathered data was performed. Additionally, the influence of outliers on the results was examined. The results showed that analyses based on individual cost categories are more convincing because large projects tend to impose stronger influence on the analyses. In addition, outliers must be identified and screened to reach realistic and reliable conclusions. With regard to the actual performance of the contracting methods, each performs differently within different cost categories.

    Tsegay GEBREHIWET, Hanbin LUO

    In Ethiopian construction projects, schedule delay risk is a predominant issue because it is not properly addressed. Although several studies have been focused on the various effects of risk in construction projects, limited efforts have been made to investigate the typical and the overall schedule delay risk. In this study, our aim is to detect the typical and overall schedule delay risk throughout the construction project lifecycle, which consists of the pre-construction, construction, and post-construction stages, and compare the stages with each other. Common criteria, sub-criteria, and attributes were developed for all alternatives for the purpose of making a risk decision. The methodology that was followed integrated the multiple-criteria decision-making (MCDM) model of fuzzy analytic hierarchy process comprehensive evaluation (FAHPCE) and the relative important index (RII). Data were collected from 77 participants, who were selected through purposive sampling from different contracting organizations in Ethiopian construction projects by means of questionnaires that were distributed to experienced experts. The findings showed that there is a typical delay risk either in the type or in the level of the different construction activities. Consequently, the most influenced alternative is the construction stage because of the high-risk responsibility, resource, and contract condition related criteria. The post-construction stage was the second most influenced stage because of the high-risk responsibility-related criteria. The pre-constructed stage was the least influenced stage that consist high-risk criteria of responsibility, resource, and contract condition related. These differences provided noteworthy information about risk mitigation in construction projects by identifying the exact risk level on specific activity to make appropriate decision.

    Zhengdong YANG, Feng JIN, Shiyu DU, Jingwen LI

    At present, the further development of new energy vehicles industry is hindered by limited consumer’s participation or capital investment. Therefore, a new multilateral model of cross-industry alliance needs to arise. The advanced charging technology of Internet-distributed mobile energy can link up with many market participants closely and form an effective and multilateral win-win cross-industry alliance. This new industry alliance can realize unexpected multiple goals, for example, (1) consumers who have purchased new energy vehicles can avail free charging; (2) potential vehicle buyers can be encouraged to use new energy vehicles; (3) the new energy vehicle manufacturers can expand their production scale; (4) the new energy vehicles sellers (4S shop) can expand their sales volume; (5) large shopping malls can attain more income; (6) financial institutions can absorb more deposits; (7) governments can further promote low-carbon traffic. This article analyzes the cross-industry alliance and its forming mechanism.

    Chunfei WU, Xiaojiang LI, Pengfei LI
    Yang HONG