A two-phase learning approach integrated with multi-source features for cloud service QoS prediction
Fuzan CHEN , Jing YANG , Haiyang FENG , Harris WU , Minqiang LI
Front. Eng ›› 2025, Vol. 12 ›› Issue (1) : 117 -127.
A two-phase learning approach integrated with multi-source features for cloud service QoS prediction
Quality of Service (QoS) is a key factor for users when choosing cloud services. However, QoS values are often unavailable due to insufficient user evaluations or provider data. To address this, we propose a new QoS prediction method, Multi-source Feature Two-phase Learning (MFTL). MFTL incorporates multiple sources of features influencing QoS and uses a two-phase learning framework to make effective use of these features. In the first phase, coarse-grained learning is performed using a neighborhood-integrated matrix factorization model, along with a strategy for selecting high-quality neighbors for target users. In the second phase, reinforcement learning through a deep neural network is used to capture interactions between users and services. We conducted several experiments using the WS-Dream data set to assess MFTL’s performance in predicting response time QoS. The results show that MFTL outperforms many leading QoS prediction methods.
cloud service / QoS prediction / matrix factorization / deep neural network
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
The Author(s). This article is published with open access at link.springer.com and journal.hep.com.cn
/
| 〈 |
|
〉 |