Digital and Intelligence Education in Medicine: A Bibliometric and Visualization Analysis Using CiteSpace and VOSviewer

Bing Xiang Yang, FuLing Zhou, Nan Bai, Sichen Zhou, Chunyan Luo, Qing Wang, Arkers Kwan Ching Wong, Frances Lin

Frontiers of Digital Education ›› 2025, Vol. 2 ›› Issue (1) : 10.

PDF(9800 KB)
PDF(9800 KB)
Frontiers of Digital Education ›› 2025, Vol. 2 ›› Issue (1) : 10. DOI: 10.1007/s44366-025-0046-y
REVIEW ARTICLE

Digital and Intelligence Education in Medicine: A Bibliometric and Visualization Analysis Using CiteSpace and VOSviewer

Author information +
History +

Abstract

This study provides a comprehensive bibliometric analysis of the development and current status of digital and intelligence education in medicine over the past decade, with a focus on the integration of digital technologies in professional training. Using bibliometric methods, we analyzed publications between 2015 and 2024, identifying key research themes, emerging technologies, and the contributions of leading institutions and countries. The results show a steady increase in publications, particularly from 2022 to 2024, reflecting a growing global interest in digital and intelligence education in medicine, driven by technological advancements and the COVID-19 pandemic. Key themes identified include artificial intelligence-powered personalization, virtual reality in training, deep learning for medical imaging, and the use of language models for interactive teaching. However, challenges such as disparities in global research capacity, data privacy concerns, ethical issues, and resource inequality are also highlighted. Notably, the integration of intelligent digital platforms in education has been found to be transformative, particularly in clinical training, adaptive learning, and medical diagnostics simulation. The study concludes that while digital and intelligent technologies have the potential to revolutionize medical education, addressing ethical, technical, and resource-based challenges is crucial for equitable global implementation. Future research should focus on fostering international collaboration, developing standardized frameworks, and creating inclusive, low-cost digital tools to democratize medical education, thereby improving healthcare outcomes worldwide.

Graphical abstract

Keywords

digital technologies / artificial intelligence / medical education / bibliometrics / CiteSpace / New Medicine

Cite this article

Download citation ▾
Bing Xiang Yang, FuLing Zhou, Nan Bai, Sichen Zhou, Chunyan Luo, Qing Wang, Arkers Kwan Ching Wong, Frances Lin. Digital and Intelligence Education in Medicine: A Bibliometric and Visualization Analysis Using CiteSpace and VOSviewer. Frontiers of Digital Education, 2025, 2(1): 10 https://doi.org/10.1007/s44366-025-0046-y

References

[1]
Abd-Alrazaq, A., AlSaad, R., Alhuwail, D., Ahmed, A., Healy, P. M., Latifi, S., Aziz, S., Damseh, R., Alrazak, S. A., & Sheikh, J. (2023). Large language models in medical education: Opportunities, challenges, and future directions.JMIR Medical Education, 9: e48291
[2]
Alaraj, A., Luciano, C. J., Bailey, D. P., Elsenousi, A., Roitberg, B. Z., Bernardo, A., Banerjee, P. P., & Charbel, F. T. (2015). Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback.Neurosurgery, 11(1): 52–58
[3]
Alrashed, F., Ahmad, T., Almurdi, M., Alderaa, A., Alhammad, S., Serajuddin, M., & Alsubiheen, A. (2024). Incorporating technology adoption in medical education: A qualitative study of medical students’ perspectives.Advances in Medical Education and Practice, 15: 615–625
[4]
Aydınlar, A., Mavi, A., Kütükçü, E., Kırımlı, E. E., Alış, D., Akın, A., & Altıntaş, L. (2024). Awareness and level of digital literacy among students receiving health-based education.BMC Medical Education, 24(1): 38
[5]
Ayers, J. W., Poliak, A., Dredze, M., Leas, E. C., Zhu, Z., Kelley, J. B., Faix, D., Goodman, A., Longhurst, C., Hogarth, M., & Smith, D. M. (2023). Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum.JAMA Internal Medicine, 183(6): 589–596
[6]
Ba, H., Zhang, L., & Yi, Z. (2024). Enhancing clinical skills in pediatric trainees: A comparative study of ChatGPT-assisted and traditional teaching methods.BMC Medical Education, 24(1): 558
[7]
Benítez, T. M., Xu, Y., Boudreau, J. D., Kow, A. W. C., Bello, F., Van Phuoc, L., Wang, X. F., Sun, X. D., Leung, G. K. K., Lan, Y. Y., Wang, Y. X., Cheng, D., Tham, Y. C., Wong, T. Y., & Chung, K. C. (2024). Harnessing the potential of large language models in medical education: Promise and pitfalls.Journal of the American Medical Informatics Association, 31(3): 776–783
[8]
Birkle, C., Pendlebury, D. A., Schnell, J., & Adams, J. (2020). Web of Science as a data source for research on scientific and scholarly activity.Quantitative Science Studies, 1(1): 363–376
[9]
Boscardin, C. K., Gin, B., Golde, P. B., & Hauer, K. E. (2024). ChatGPT and generative artificial intelligence for medical education: Potential impact and opportunity.Academic Medicine, 99(1): 22–27
[10]
Boutin, J., Kamoonpuri, J., Faieghi, R., Chung, J., de Ribaupierre, S., & Eagleson, R. (2023). Smart haptic gloves for virtual reality surgery simulation: A pilot study on external ventricular drain training.Frontiers in Robotics and AI, 10: 1273631
[11]
Bowles, J., Webber, T., Blackledge, E., & Vermeulen, A. (2021). A blockchain-based healthcare platform for secure personalised data sharing.Studies in Health Technology and Informatics, 281: 208–212
[12]
Brands, M., Gouw, S., Beestrum, M., Cronin, R., Fijnvandraat, K., & Badawy, S. (2022). Patient-centered digital health records and their effects on health outcomes: Systematic review.Journal of Medical Internet Research, 24(12): e43086
[13]
Carpegna, G., Scotti, N., Alovisi, M., Comba, A., Berutti, E., & Pasqualini, D. (2023). Endodontic microsurgery virtual reality simulation and digital workflow process in a teaching environment. European Journal of Dental Education. (in press).
[14]
Chaddad, A., Peng, J., Xu, J., & Bouridane, A. (2023). Survey of explainable AI techniques in healthcare.Sensors, 23(2): 634
[15]
Chan, H., Samala, R., Hadjiiski, L., & Zhou, C. (2020). Deep learning in medical image analysis. In: Lee, G., & Fujita, H., eds. Deep learning in medical image analysis. Cham: Springer, 3–21.
[16]
Chan, K. S., & Zary, N. (2019). Applications and challenges of implementing artificial intelligence in medical education: Integrative review.JMIR Medical Education, 5(1): e13930
[17]
Chen, C., & Chen, Y. (2005). Searching for clinical evidence in CiteSpace.AMIA Annual Symposium Proceedings, 2005: 121–125
[18]
Civaner, M. M., Uncu, Y., Bulut, F., Chalil, E. G., & Tatli, A. (2022). Artificial intelligence in medical education: A cross-sectional needs assessment.BMC Medical Education, 22(1): 772
[19]
Cui, H., Hu, L., & Chi, L. (2023). Advances in computer-aided medical image processing.Applied Sciences, 13(12): 7079
[20]
Darras, K. E., Spouge, R., Hatala, R., Nicolaou, S., Hu, J., Worthington, A., Krebs, C., & Forster, B. B. (2019). Integrated virtual and cadaveric dissection laboratories enhance first year medical students’ anatomy experience: A pilot study.BMC Medical Education, 19(1): 366
[21]
Dave, M., & Patel, N. (2023). Artificial intelligence in healthcare and education.British Dental Journal, 234(10): 761–764
[22]
Deshmukh, A. (2024). Artificial intelligence in medical imaging: Applications of deep learning for disease detection and diagnosis.Universal Research Reports, 11(3): 31–36
[23]
Di Vece, C., Luciano, C., & De Momi, E. (2021). Psychomotor skills development for Veress needle placement using a virtual reality and haptics-based simulator.International Journal of Computer Assisted Radiology and Surgery, 16(4): 639–647
[24]
Divito, C., Katchikian, B., Gruenwald, J., & Burgoon, J. (2024). The tools of the future are the challenges of today: The use of ChatGPT in problem-based learning medical education.Medical Teacher, 46(3): 320–322
[25]
Dolai, S., & Mitra, E. (2024). Optimizing medical image analysis: Leveraging efficient hardware and AI algorithms. In: Proceedings of the 2024 37th International Conference on VLSI Design and 2024 23rd International Conference on Embedded Systems. IEEE, 198–203.
[26]
Dudok, O., Dumych, T., Hzhehotska-Solonko, S., Yuzych, O., & Chelpanova, I. (2024). The potential of AI to enhance medical education: Opportunities, challenges, and ethical considerations.Wiadomości Lekarskie, 77(S1): 51
[27]
Elanjeran, R., Ramkumar, A., & Mahmood, L. S. (2024). Digitalisation of the simulation landscape—Novel solutions for simulation in low-resource settings.Indian Journal of Anaesthesia, 68(1): 71–77
[28]
Farooqi, M. T. K., Amanat, I., & Awan, S. M. (2024). Ethical considerations and challenges in the integration of artificial intelligence in education: A systematic review.Journal of Excellence in Management Sciences, 3(4): 35–50
[29]
Fu, M. Z., Islam, R., Singer, E. A., & Tabakin, A. L. (2023). The Impact of COVID-19 on surgical training and education.Cancers, 15(4): 1267
[30]
Furlan, R., Gatti, M., Menè, R., Shiffer, D., Marchiori, C., Giaj Levra, A., Saturnino, V., Brunetta, E., & Dipaola, F. (2021). A natural language processing-based virtual patient simulator and intelligent tutoring system for the clinical diagnostic process: Simulator development and case study.JMIR Medical Informatics, 9(4): e24073
[31]
Gilson, A., Safranek, C. W., Huang, T., Socrates, V., Chi, L., Taylor, R. A., & Chartash, D. (2023). How does ChatGPT perform on the United States Medical Licensing Examination (USMLE)? The implications of large language models for medical education and knowledge assessment.JMIR Medical Education, 9(1): e45312
[32]
Gupta, N., Khatri, K., Malik, Y., Lakhani, A., Kanwal, A., Aggarwal, S., & Dahuja, A. (2024). Exploring prospects, hurdles, and road ahead for generative artificial intelligence in orthopedic education and training.BMC Medical Education, 24(1): 1544
[33]
Holderried, F., Stegemann-Philipps, C., Herrmann-Werner, A., Festl-Wietek, T., Holderried, M., Eickhoff, C., & Mahling, M. (2024). A language model-powered simulated patient with automated feedback for history taking: Prospective study.JMIR Medical Education, 10: e59213
[34]
Hossain, E., Rana, R., Higgins, N., Soar, J., Barua, P. D., Pisani, A. R., & Turner, K. (2023). Natural language processing in electronic health records in relation to healthcare decision-making: A systematic review.Computers in Biology and Medicine, 155: 106649
[35]
Huang, S. C., Pareek, A., Seyyedi, S., Banerjee, I., & Lungren, M. (2020). Fusion of medical imaging and electronic health records using deep learning: A systematic review and implementation guidelines.npj Digital Medicine, 3: 136
[36]
Huijser, H., Ames, K., Bozkurt, A., Corrin, L., Costello, E., Cowling, M., Czerniewicz, L., Deneen, C., Han, F. F., Littlejohn, A., Wise, A., Wright, M., & Zou, T. (2024). Collaboration or competition? The value of sector-wide collaboration in educational technology research.Australasian Journal of Educational Technology, 40(3): 1–8
[37]
Jeyaraman, M., Balaji, S., Jeyaraman, N., & Yadav, S. (2023). Unraveling the ethical enigma: Artificial intelligence in healthcare.Cureus, 15(8): e43262
[38]
Joy, Z. H., Rahman, M. M., Uzzaman, A., & Maraj, M. A. A. (2024). Integrating machine learning and Big Data analytics for real-time disease detection in smart healthcare systems.Global Mainstream Journal, 1(3): 16–27
[39]
Kashyap, R., Samuel, Y., Friedman, L. W., & Samuel, J. (2024). Editorial: Artificial intelligence education & governance—Human enhancive, culturally sensitive and personally adaptive HAI.Frontiers in Artificial Intelligence, 7: 1443386
[40]
Kermany, D., Kermany, D., Goldbaum, M., Cai, W., Valentim, C., Liang, H., Baxter, S. L., McKeown, A., Yang, G., Wu, X. K., Yan, F. B., Dong, J., Prasadha, M. K., Pei, J., Ting, M. Y. L., Zhu, J., Li, C., Hewett, S., Dong, J., Ziyar, I., Shi, A., Zhang, R. Z., Zheng, L. H., Hou, R., Shi, W., Fu, X., Duan, Y. O., Huu, V. A. N., Wen, C., Zhang, E. D., Zhang, C. L., Li, O. L., Wang, X. B., Singer, M. A., Sun, X. D., Xu, J., Tafreshi, A., Lewis, M. A., Xia, H. M., & Zhang, K. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning.Cell, 172(5): 1122–1131
[41]
Khan, R. A., Jawaid, M., Khan, A. R., & Sajjad, M. (2023). ChatGPT—Reshaping medical education and clinical management.Pakistan Journal of Medical Sciences, 39(2): 605
[42]
Kleib, M., Arnaert, A., Nagle, L. M., Ali, S., Idrees, S., da Costa, D. D., Kennedy, M., & Darko, E. M. (2024). Digital health education and training for undergraduate and graduate nursing students: Scoping review.JMIR Nursing, 7: e58170
[43]
Kononowicz, A. A., Woodham, L. A., Edelbring, S., Stathakarou, N., Davies, D., Saxena, N., Car, L. T., Carlstedt-Duke, J., Car, J., & Zary, N. (2019). Virtual patient simulations in health professions education: Systematic review and meta-analysis by the digital health education collaboration.Journal of Medical Internet Research, 21(7): e14676
[44]
Kung, T. H., Cheatham, M., Medenilla, A., Sillos, C., De Leon, L., Elepaño, C., Madriaga, M., Aggabao, R., Diaz-Candido, G., Maningo, J., & Tseng, V. (2023). Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models.PLoS Digital Health, 2(2): e0000198
[45]
Kurhade, N., & Joshi, N. (2024). The role of artificial intelligence in digital health.International Journal for Multidisciplinary Research, 6(4): 1–10
[46]
Kurniawan, M. H., Handiyani, H., Nuraini, T., Hariyati, R. T. S., & Sutrisno, S. (2024). A systematic review of artificial intelligence-powered (AI-powered) chatbot intervention for managing chronic illness.Annals of Medicine, 56(1): 2302980
[47]
Kyaw, B. M., Saxena, N., Posadzki, P., Vseteckova, J., Nikolaou, C. K., George, P. P., Divakar, U., Masiello, I., Kononowicz, A. A., Zary, N., & Tudor Car, L. (2019). Virtual reality for health professions education: Systematic review and meta-analysis by the digital health education collaboration.Journal of Medical Internet Research, 21(1): e12959
[48]
Lee, H. (2024). The rise of ChatGPT: Exploring its potential in medical education.Anatomical Sciences Education, 17(5): 926–931
[49]
Li, M., Jiang, Y., Zhang, Y., & Zhu, H. (2023). Medical image analysis using deep learning algorithms.Frontiers in Public Health, 11: 1273253
[50]
Li, Q., & Qin, Y. (2023). AI in medical education: Medical student perception, curriculum recommendations and design suggestions.BMC Medical Education, 23(1): 852
[51]
Liu, J., Jiao, X., Zeng, S., Li, H., Jin, P., Chi, J., Liu, X. Y., Yu, Y., Ma, G. C., Zhao, Y. J., Li, M., Peng, Z. K., Huo, Y. B., & Gao, Q. L. (2022). Oncological Big Data platforms for promoting digital competencies and professionalism in Chinese medical students: A cross-sectional study.BMJ Open, 12(9): e061015
[52]
Ma, X., Wang, Y., Pu, Y., Shang, H., Zhang, H., & Zhang, X. (2024). The integration of psychology and medicine: An empirical study of curriculum reform from the perspective of China.Frontiers in Psychology, 15: 1469067
[53]
Marques, M., Almeida, A., & Pereira, H. (2024). The medicine revolution through artificial intelligence: Ethical challenges of machine learning algorithms in decision-making.Cureus, 16(9): e69405
[54]
Masters, K. (2019). Artificial intelligence in medical education.Medical Teacher, 41(9): 976–980
[55]
McGee, R. G., Wark, S., Mwangi, F., Drovandi, A., Alele, F., & Malau-Aduli, B. S. (2024). Digital learning of clinical skills and its impact on medical students’ academic performance: A systematic review.BMC Medical Education, 24(1): 1477
[56]
McIntosh, C., Patel, K. R., Lekakis, G., & Wong, B. J. F. (2022). Emerging trends in rhinoplasty education: Accelerated adoption of digital tools and virtual learning platforms.Current Opinion in Otolaryngology & Head and Neck Surgery, 30(4): 226–229
[57]
McLean, A. L. (2024). Constructing knowledge: The role of AI in medical learning.Journal of the American Medical Informatics Association, 31(8): 1797–1798
[58]
Menon, A., Gaglani, S., Haynes, M. R., & Tackett, S. (2017). Using “Big Data” to guide implementation of a web and mobile adaptive learning platform for medical students.Medical Teacher, 39(9): 975–980
[59]
Mirchi, N., Bissonnette, V., Yilmaz, R., Ledwos, N., Winkler-Schwartz, A., & Del Maestro, R. F. (2020). The virtual operative assistant: An explainable artificial intelligence tool for simulation-based training in surgery and medicine.PLoS One, 15(2): e0229596
[60]
Mistry, D., Brock, C. A., & Lindsey, T. (2023). The present and future of virtual reality in medical education: A narrative review.Cureus, 15(12): e51124
[61]
Nagler, M. (2024). Artificial intelligence in medicine: Are we ready.Hämostaseologie, 44(6): 422–424
[62]
Neyem, A., Cadile, M., Burgos-Martínez, S. A., Farfán Cabello, E., Inzunza, O., Alvarado, M. S., Tubbs, R. S., & Ottone, N. E. (2024). Enhancing medical anatomy education with the integration of virtual reality into traditional lab settings. Clinical Anatomy. (in press).
[63]
Ou, W. C., Polat, D., & Dogan, B. E. (2021). Deep learning in breast radiology: Current progress and future directions.European Radiology, 31(7): 4872–4885
[64]
Panait, L., Akkary, E., Bell, R. L., Roberts, K. E., Dudrick, S. J., & Duffy, A. J. (2009). The role of haptic feedback in laparoscopic simulation training.Journal of Surgical Research, 156(2): 312–316
[65]
Paranjape, K., Schinkel, M., Panday, R. N., Car, J., & Nanayakkara, P. (2019). Introducing artificial intelligence training in medical education.JMIR Medical Education, 5(2): e16048
[66]
Park, J., Lee, K., & Chung, D. (2022). Public interest in the digital transformation accelerated by the COVID-19 pandemic and perception of its future impact.The Korean Journal of Internal Medicine, 37(6): 1223–1233
[67]
Parmar, C. A. (2024). Artificial intelligence’s ethical and legal issues in the healthcare sector.International Journal of Research in Medical Sciences and Technology, 17(1): 51–55
[68]
Pinto Dos Santos, D., Giese, D., Brodehl, S., Chon, S. H., Staab, W., Kleinert, R., Maintz, D., & Baeßler, B. (2019). Medical students’ attitude towards artificial intelligence: A multicentre survey.European Radiology, 29: 1640–1646
[69]
Pupic, N., Ghaffari-Zadeh, A., Hu, R., Singla, R., Darras, K., Karwowska, A., & Forster, B. (2023). An evidence-based approach to artificial intelligence education for medical students: A systematic review.PLoS Digital Health, 2(11): e0000255
[70]
Qiu, J., Li, L., Sun, J., Peng, J., Shi, P., Zhang, R., Dong, Y. Z., Lam, K., Lo, F. P. W., Xiao, B., Yuan, W., Wang, N. L., Xu, D., & Lo, B. (2023). Large AI models in health informatics: Applications, challenges, and the future.IEEE Journal of Biomedical and Health Informatics, 27(12): 6074–6087
[71]
Queisner, M., & Eisenträger, K. (2024). Surgical planning in virtual reality: A systematic review.Journal of Medical Imaging, 11(6): 062603
[72]
Rabie, R. M. (2023). The role of artificial intelligence and personalized education in medical curriculum: A systematic review of applications and challenges.Faculty of Education Journal Alexandria University, 33(4): 365–384
[73]
Rangarajan, K., Davis, H., & Pucher, P. H. (2020). Systematic review of virtual haptics in surgical simulation: A valid educational tool.Journal of Surgical Education, 77(2): 337–347
[74]
Rathore, N., Kumari, A., Patel, M., Chudasama, A., Bhalani, D., Tanwar, S., & Alabdulatif, A. (2025). Synergy of AI and blockchain to secure electronic healthcare records.Security And Privacy, 8(1): e463
CrossRef Google scholar
[75]
Ravi, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., & Yang, G. Z. (2017). Deep learning for health informatics.IEEE Journal of Biomedical and Health Informatics, 21(1): 4–21
[76]
Sadek, O., Baldwin, F., Gray, R., Khayyat, N., & Fotis, T. (2023). Impact of virtual and augmented reality on quality of medical education during the COVID-19 pandemic: A systematic review.Journal of Graduate Medical Education, 15(3): 328–338
[77]
Sallam, M. (2023). ChatGPT utility in healthcare education, research, and practice: Systematic review on the promising perspectives and valid concerns. Healthcare, 11(6), 887.
[78]
Schachner, T., Keller, R., & von Wangenheim, F. (2020). Artificial intelligence-based conversational agents for chronic conditions: Systematic literature review.Journal of Medical Internet Research, 22(9): e20701
[79]
Sharma, V., Saini, U., Pareek, V., Sharma, L., & Kumar, S. (2023). Artificial intelligence (AI) integration in medical education: A pan-India cross-sectional observation of acceptance and understanding among students.Scripta Medica, 54(4): 343–352
[80]
Shukla, R. K., Rakhra, M., Singh, D., & Singh, A. K. (2022). The role of machine learning in health care diagnosis. In: Proceedings of 2022 the 4th International Conference on Artificial Intelligence and Speech Technology. IEEE, 1–6.
[81]
Sit, C., Srinivasan, R., Amlani, A., Muthuswamy, K., Azam, A., Monzon, L., & Poon, D. S. (2020). Attitudes and perceptions of UK medical students towards artificial intelligence and radiology: A multicentre survey.Insights into Imaging, 11(1): 14
[82]
Synnestvedt, M. B., Chen, C., & Holmes, J. H. (2005). CiteSpace Ⅱ: Visualization and knowledge discovery in bibliographic databases.AMIA Annual Symposium Proceedings, 2005: 724–728
[83]
Takagi, S., Watari, T., Erabi, A., & Sakaguchi, K. (2023). Performance of GPT-3.5 and GPT-4 on the Japanese medical licensing examination: Comparison study.JMIR Medical Education, 9: e48002
[84]
Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence.Nature Medicine, 25(1): 44–56
[85]
Turner, L., Hashimoto, D., Vasisht, S., & Schaye, V. (2024). Demystifying AI: Current state and future role in medical education assessment.Academic Medicine, 99(4S): S42–S47
[86]
Van De Vijver, S., Hummel, D., Van Dijk, A. H., Cox, J., Van Dijk, O., Van Den Broek, N. T., & Metting, E. (2022). Evaluation of a digital self-management platform for patients with chronic illness in primary care: Qualitative study of Stakeholders’ perspectives.JMIR Formative Research, 6(8): e38424
[87]
van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping.Scientometrics, 84(2): 523–538
[88]
Viswanathan, J., Saranya, N., & Inbamani, A. (2021). Deep learning applications in medical imaging: Introduction to deep learning-based intelligent systems for medical applications. In: Saxena, S., & Paul, S., eds. Deep learning applications in medical imaging. Hershey: Medical Information Science Reference.
[89]
Wartman, S. A., & Combs, C. D. (2018). Medical education must move from the information age to the age of artificial intelligence.Academic Medicine: Journal of the Association of American Medical Colleges, 93(8): 1107–1109
[90]
Weidener, L., & Fischer, M. (2023). Teaching AI ethics in medical education: A scoping review of current literature and practices.Perspectives on Medical Education, 12(1): 399–410
[91]
Wu, D., Xiang, Y., Wu, X., Yu, T., Huang, X., Zou, Y., Liu, Z. Z., & Lin, H. (2020). Artificial intelligence-tutoring problem-based learning in ophthalmology clerkship.Annals of Translational Medicine, 8(11): 700
[92]
Xu, X., Chen, Y., & Miao, J. (2024). Opportunities, challenges, and future directions of large language models, including ChatGPT in medical education: A systematic scoping review.Journal of Educational Evaluation for Health Professions, 21: 6
[93]
Yakkala, K. K. (2024). AI and VR integration in E-learning: Designing meaningful learning environments.World Journal of Advanced Engineering Technology and Sciences, 13(1): 783–791
[94]
Yeung, A. W. K. (2019). Comparison between Scopus, Web of Science, PubMed and publishers for mislabelled review papers.Current Science, 116(11): 1909–1914
[95]
Zhao, C., Xu, T., Yao, Y., Song, Q., & Xu, B. (2023). Comparison of case-based learning using Watson for oncology and traditional method in teaching undergraduate medical students.International Journal of Medical Informatics, 177: 105117

Acknowledgments

This study was funded by the Teaching Reform Research Project of the Medical School of Wuhan University (Grant No. 2024ZD29) and the Comprehensive Reform Project for Undergraduate Education Quality Construction at Wuhan University (Digital and Intelligence Education in Health and Medicine).

Conflict of Interest

The authors declare that they have no conflict of interest.

Data Availability Statements

The authors confirm that all data generated or analyzed during this study are included in this published article.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(9800 KB)

Accesses

Citations

Detail

Sections
Recommended

/