Rethinking evaluation for multi-label drug-drug interaction prediction

Shi-Yu TIAN, Zhi ZHOU, Xin SU, Yu-Feng LI

Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (9) : 199358.

PDF(233 KB)
Front. Comput. Sci. All Journals
PDF(233 KB)
Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (9) : 199358. DOI: 10.1007/s11704-024-41055-9
Artificial Intelligence

Rethinking evaluation for multi-label drug-drug interaction prediction

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Shi-Yu TIAN, Zhi ZHOU, Xin SU, Yu-Feng LI. Rethinking evaluation for multi-label drug-drug interaction prediction. Front. Comput. Sci., 2025, 19(9): 199358 https://doi.org/10.1007/s11704-024-41055-9
This is a preview of subscription content, contact us for subscripton.

References

[1]
K antor E D, R ehm C D, H aas J S, C han A T, G iovannucci E L . Trends in prescription drug use among adults in the United States from 1999−2012. JAMA, 2015, 314( 17): 1818–1830
[2]
M arengoni A, P asina L, C oncoreggi C, M artini G, B rognoli F, N obili A, O nder G, B ettoni D . Understanding adverse drug reactions in older adults through drug–drug interactions. European Journal of Internal Medicine, 2014, 25( 9): 843–846
[3]
Z hao H, Z hong J, L iang X, X ie C, W ang S . Application of machine learning in drug side effect prediction: databases, methods, and challenges. Frontiers of Computer Science, 2025, 19( 5): 195902
[4]
Karim R, Cochez M, Jares J B, Uddin M, Beyan O, Decker S. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. In: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. 2019, 113−123
[5]
H uang K, X iao C, G lass L M, Z itnik M, S un J . SkipGNN: predicting molecular interactions with skip-graph networks. Scientific Reports, 2020, 10( 1): 21092
[6]
Z itnik M, A grawal M, L eskovec J . Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics, 2018, 34( 13): i457–i466
[7]
Y u Y, H uang K, Z hang C, G lass L M, S un J, X iao C . SumGNN: multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics, 2021, 37( 18): 2988–2995
[8]
W ang Y, Y ang Z, Y ao Q . Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning. Communications Medicine, 2024, 4( 1): 59
[9]
Z hang Y, Y ao Q, Y ue L, W u X, Z hang Z, L in Z, Z heng Y . Emerging drug interaction prediction enabled by a flow-based graph neural network with biomedical network. Nature Computational Science, 2023, 3( 12): 1023–1033

Acknowledegments

This research was supported by the Key Program of Jiangsu Science Foundation (BK20243012) and the Fundamental Research Funds for the Central Universities (022114380023).

Competing interests

The authors declare that they have no competing interests or financial conflicts to disclose.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(233 KB)

Supplementary files

Highlights (226 KB)

Part of a collection:

Excellent Young Computer Scientists Vision on AI for Science

211

Accesses

0

Citations

Detail

Sections
Recommended

/