DeepSwarm: towards swarm deep learning with bi-directional optimization of data acquisition and processing
Sicong LIU, Bin GUO, Ziqi WANG, Lehao WANG, Zimu ZHOU, Xiaochen LI, Zhiwen YU
DeepSwarm: towards swarm deep learning with bi-directional optimization of data acquisition and processing
[1] |
Liu S, Guo B, Fang C, Wang Z, Luo S, Zhou Z, Yu Z . Enabling resource-efficient AIoT system with cross-level optimization: a survey. IEEE Communications Surveys & Tutorials, 2024, 26( 1): 389–427
|
[2] |
Ma S, Pei J, Zhang W, Wang G, Feng D, Yu F, Song C, Qu H, Ma C, Lu M, Liu F, Zhou W, Wu Y, Lin Y, Li H, Wang T, Song J, Liu X, Li G, Zhao R, Shi L . Neuromorphic computing chip with spatiotemporal elasticity for multi-intelligent-tasking robots. Science Robotics, 2022, 7( 67): eabk2948
|
[3] |
Hu Y, Fang S, Lei Z, Zhang Y, Chen S. Where2comm: communication-efficient collaborative perception via spatial confidence maps. In: Proceedings of the 36th Conference on Neural Information Processing Systems. 2022, 4874−4886
|
[4] |
Bonabeau E, Dorigo M, Theraulaz G. Swarm Intelligence: from Natural to Artificial Systems. Oxford: Oxford University Press, 1999
|
[5] |
Mullapudi R T, Chen S, Zhang K, Ramanan D, Fatahalian K. Online model distillation for efficient video inference. In: Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. 2019. 3572−3581
|
[6] |
Chen Y, Li W, Sakaridis C, Dai D, Van Gool L. Domain adaptive faster R-CNN for object detection in the wild. In: Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018. 3339−3348
|
/
〈 | 〉 |