Mutation-drug sensitivity data resource (MDSDR):a comprehensive resource for studying and addressing drug resistance

Weihao LI , Zhe LIU , Yihang BAO , Shunying YU , Huafang LI , Guan Ning LIN

Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (6) : 196913

PDF (274KB)
Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (6) : 196913 DOI: 10.1007/s11704-024-40390-1
Code & Data
LETTER

Mutation-drug sensitivity data resource (MDSDR):a comprehensive resource for studying and addressing drug resistance

Author information +
History +
PDF (274KB)

Graphical abstract

Cite this article

Download citation ▾
Weihao LI, Zhe LIU, Yihang BAO, Shunying YU, Huafang LI, Guan Ning LIN. Mutation-drug sensitivity data resource (MDSDR):a comprehensive resource for studying and addressing drug resistance. Front. Comput. Sci., 2025, 19(6): 196913 DOI:10.1007/s11704-024-40390-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Haider T, Pandey V, Banjare N, Gupta P N, Soni V . Drug resistance in cancer: mechanisms and tackling strategies. Pharmacological Reports, 2020, 72( 5): 1125–1151

[2]

Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S . Drug resistance in cancer: an overview. Cancers, 2014, 6( 3): 1769–1792

[3]

Wu F X, Wang F, Yang J F, Jiang W, Wang M Y, Jia C Y, Hao G F, Yang G F . AIMMS suite: a Web server dedicated for prediction of drug resistance on protein mutation. Briefings in Bioinformatics, 2020, 21( 1): 318–328

[4]

Griffith M, Spies N C, Krysiak K, Mcmichael J F, Coffman A C, Danos A M, Ainscough B J, Ramirez C A, Rieke D T, Kujan L, Barnell E K, Wagner A H, Skidmore Z L, Wollam A, Liu C J, Jones M R, Bilski R L, Lesurf R, Feng Y Y, Shah N M, Bonakdar M, Trani L, Matlock M, Ramu A, Campbell K M, Spies G C, Graubert A P, Gangavarapu K, Eldred J M, Larson D E, Walker J R, Good B M, Wu C, Su A I, Dienstmann R, Margolin A A, Tamborero D, Lopez-Bigas N, Jones S J M, Bose R, Spencer D H, Wartman L D, Wilson R K, Mardis E R, Griffith O L . CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nature Genetics, 2017, 49( 2): 170–174

[5]

Whirl-Carrillo M, Huddart R, Gong L, Sangkuhl K, Thorn C F, Whaley R, Klein T E . An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clinical Pharmacology & Therapeutics, 2021, 110( 3): 563–572

[6]

Shen Y, Zhang Y, Xue W, Yue Z . dbMCS: a database for exploring the mutation markers of anti-cancer drug sensitivity. IEEE Journal of Biomedical and Health Informatics, 2021, 25( 11): 4229–4237

[7]

Behan F M, Iorio F, Picco G, et al. Prioritization of Cancer therapeutic targets using CRISPR-Cas9 screens. Nature, 2019, 568: 511–516

[8]

Yang W, Soares J, Greninger P, Edelman E J, Lightfoot H, Forbes S, Bindal N, Beare D, Smith J A, Thompson I R, Ramaswamy S, Futreal P A, Haber D A, Stratton M R, Benes C, Mcdermott U, Garnett M J . Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Research, 2012, 41( D1): D955–D961

[9]

Liu X, Shen T, Mooers B H M, Hilberg F, Wu J . Drug resistance profiles of mutations in the RET kinase domain. British Journal of Pharmacology, 2018, 175( 17): 3504–3515

[10]

Hauser K, Negron C, Albanese S K, Ray S, Steinbrecher T, Abel R, Chodera J D, Wang L . Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy calculations. Communications Biology, 2018, 1: 70

[11]

Yang Z, Ye Z, Qiu J, Feng R, Li D, Hsieh C, Allcock J, Zhang S . A mutation-induced drug resistance database (MdrDB). Communications Chemistry, 2023, 6( 1): 123

[12]

UniProt Consortium . UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Research, 2023, 51( D1): D523–D531

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (274KB)

Supplementary files

Highlights

Supplementary materials

1350

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/