Optimizing low-rank adaptation with decomposed matrices and adaptive rank allocation
Dacao ZHANG, Fan YANG, Kun ZHANG, Xin LI, Si WEI, Richang HONG, Meng WANG
Optimizing low-rank adaptation with decomposed matrices and adaptive rank allocation
[1] |
Wang A, Singh A, Michael J, Hill F, Levy O, Bowman S. GLUE: a multi-task benchmark and analysis platform for natural language understanding. In: Proceedings of 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. 2018, 353−355
|
[2] |
Chen L, Wu L, Zhang K, Hong R, Lian D, Zhang Z, Zhou J, Wang M. Improving recommendation fairness via data augmentation. In: Proceedings of the ACM Web Conference 2023. 2023, 1012−1020
|
[3] |
Hu E J, Shen Y, Wallis P, Allen-Zhu Z, Li Y, Wang S, Wang L, Chen W. LoRA: low-rank adaptation of large language models. In: Proceedings of the 10th International Conference on Learning Representations. 2021, 1−26
|
[4] |
Zhang Q, Chen M, Bukharin A, He P, Cheng Y, Chen W, Zhao T. Adaptive budget allocation for parameter-efficient fine-tuning. In: Proceedings of the 11th International Conference on Learning Representations. 2023, 1−17
|
[5] |
Valipour M, Rezagholizadeh M, Kobyzev I, Ghodsi A. DyLoRA: parameter-efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In: Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics. 2023, 3274−3287
|
[6] |
Wang Y, Lin Y, Zeng X, Zhang G. MultiLoRA: democratizing LoRA for better multi-task learning. 2023, arXiv preprint arXiv: 2311.11501
|
/
〈 | 〉 |