SS-Pro: a simplified siamese contrastive learning approach for protein surface representation

Ao SHEN , Mingzhi YUAN , Yingfan MA , Manning WANG

Front. Comput. Sci. ›› 2024, Vol. 18 ›› Issue (5) : 185910

PDF (339KB)
Front. Comput. Sci. ›› 2024, Vol. 18 ›› Issue (5) : 185910 DOI: 10.1007/s11704-024-3806-9
Interdisciplinary
LETTER

SS-Pro: a simplified siamese contrastive learning approach for protein surface representation

Author information +
History +
PDF (339KB)

Graphical abstract

Cite this article

Download citation ▾
Ao SHEN, Mingzhi YUAN, Yingfan MA, Manning WANG. SS-Pro: a simplified siamese contrastive learning approach for protein surface representation. Front. Comput. Sci., 2024, 18(5): 185910 DOI:10.1007/s11704-024-3806-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Isert C, Atz K, Schneider G. Structure-based drug design with geometric deep learning. Current Opinion in Structural Biology, 2023, 79: 102548

[2]

Gainza P, Sverrisson F, Monti F, Rodolà E, Boscaini D, Bronstein M M, Correia B E. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nature Methods, 2020, 17(2): 184−192

[3]

Sverrisson F, Feydy J, Correia B E, Bronstein M M. Fast end-to-end learning on protein surfaces. In: Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, 15267−15276

[4]

Chen X, He K. Exploring simple Siamese representation learning. In: Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, 15745−15753

[5]

Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H, Shindyalov I N, Bourne P E. The protein data bank. Nucleic Acids Research, 2000, 28(1): 235−242

[6]

Yuan M, Shen A, Fu K, Guan J, Ma Y, Qiao Q, Wang M. ProteinMAE: masked autoencoder for protein surface self-supervised learning. Bioinformatics, 2023, 39(12): btad724

[7]

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, Polosukhin I. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 6000−6010

[8]

Phan A V, Le Nguyen M, Nguyen Y L H, Bui L T. DGCNN: A convolutional neural network over large-scale labeled graphs. Neural Networks, 2018, 108: 533−543

[9]

Qi C R, Yi L, Su H, Guibas L J. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 5105−5114

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (339KB)

Supplementary files

FCS-23806-OF-AS_suppl_1

785

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/