Open and real-world human-AI coordination by heterogeneous training with communication
Cong GUAN , Ke XUE , Chunpeng FAN , Feng CHEN , Lichao ZHANG , Lei YUAN , Chao QIAN , Yang YU
Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (4) : 194314
Open and real-world human-AI coordination by heterogeneous training with communication
Human-AI coordination aims to develop AI agents capable of effectively coordinating with human partners, making it a crucial aspect of cooperative multi-agent reinforcement learning (MARL). Achieving satisfying performance of AI agents poses a long-standing challenge. Recently, ah-hoc teamwork and zero-shot coordination have shown promising advancements in open-world settings, requiring agents to coordinate efficiently with a range of unseen human partners. However, these methods usually assume an overly idealistic scenario by assuming homogeneity between the agent and the partner, which deviates from real-world conditions. To facilitate the practical deployment and application of human-AI coordination in open and real-world environments, we propose the first benchmark for open and real-world human-AI coordination (ORC) called ORCBench. ORCBench includes widely used human-AI coordination environments. Notably, within the context of real-world scenarios, ORCBench considers heterogeneity between AI agents and partners, encompassing variations in capabilities and observations, which aligns more closely with real-world applications. Furthermore, we introduce a framework known as Heterogeneous training with Communication (HeteC) for ORC. HeteC builds upon a heterogeneous training framework and enhances partner population diversity by using mixed partner training and frozen historical partners. Additionally, HeteC incorporates a communication module that enables human partners to communicate with AI agents, mitigating the adverse effects of partially observable environments. Through a series of experiments, we demonstrate the effectiveness of HeteC in improving coordination performance. Our contribution serves as an initial but important step towards addressing the challenges of ORC.
human-AI coordination / multi-agent reinforcement learning / communication / open-environment coordination / real-world coordination
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |