Element relational graph-augmented multi-granularity contextualized encoding for document-level event role filler extraction

Enchang ZHU , Zhengtao YU , Yuxin HUANG , Shengxiang GAO , Yantuan XIAN

Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (2) : 192326

PDF (432KB)
Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (2) : 192326 DOI: 10.1007/s11704-024-3701-4
Artificial Intelligence
LETTER

Element relational graph-augmented multi-granularity contextualized encoding for document-level event role filler extraction

Author information +
History +
PDF (432KB)

Graphical abstract

Cite this article

Download citation ▾
Enchang ZHU, Zhengtao YU, Yuxin HUANG, Shengxiang GAO, Yantuan XIAN. Element relational graph-augmented multi-granularity contextualized encoding for document-level event role filler extraction. Front. Comput. Sci., 2025, 19(2): 192326 DOI:10.1007/s11704-024-3701-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Du X, Cardie C. Document-level event role filler extraction using multi-granularity contextualized encoding. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020, 8010–8020

[2]

McLean V. Fourth message understanding conference (MUC-4). In: Proceedings of Fourth Message Understanding Conference (MUC-4). 1992

[3]

Wadden D, Wennberg U, Luan Y, Hajishirzi H. Entity, relation, and event extraction with contextualized span representations. In: Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. 2019, 5784–5789

[4]

Du X, Rush A M, Cardie C. GRIT: Generative role-filler transformers for document-level event entity extraction. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics. 2021, 634–644

[5]

Paolini G, Athiwaratkun B, Krone J, Jie M, Achille A, Anubhai R, dos Santos C N, Xiang B, Soatto S. Structured prediction as translation between augmented natural languages. In: Proceedings of the 9th International Conference on Learning Representations. 2021, 1–26

[6]

Huang K H, Tang S, Peng N. Document-level entity-based extraction as template generation. In: Proceedings of 2021 Conference on Empirical Methods in Natural Language Processing. 2021, 5257–5269

[7]

Chen Y, Gantt W, Gu W, Chen T, White A, Van Durme B. Iterative document-level information extraction via imitation learning. In: Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics. 2023, 1858–1874

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (432KB)

Supplementary files

Highlights

714

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/