A sharding blockchain-based UAV system for search and rescue missions
Xihan ZHANG , Jiashuo ZHANG , Jianbo GAO , Libin XIA , Zhi GUAN , Hao HU , Zhong CHEN
Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (3) : 193805
A sharding blockchain-based UAV system for search and rescue missions
Sharding is a promising technique to tackle the critical weakness of scalability in blockchain-based unmanned aerial vehicle (UAV) search and rescue (SAR) systems. By breaking up the blockchain network into smaller partitions called shards that run independently and in parallel, sharding-based UAV systems can support a large number of search and rescue UAVs with improved scalability, thereby enhancing the rescue potential. However, the lack of adaptability and interoperability still hinder the application of sharded blockchain in UAV SAR systems. Adaptability refers to making adjustments to the blockchain towards real-time surrounding situations, while interoperability refers to making cross-shard interactions at the mission level. To address the above challenges, we propose a blockchain UAV system for SAR missions based on dynamic sharding mechanism. Apart from the benefits in scalability brought by sharding, our system improves adaptability by dynamically creating configurable and mission-exclusive shards, and improves interoperability by supporting calls between smart contracts that are deployed on different shards. We implement a prototype of our system based on Quorum, give an analysis of the improved adaptability and interoperability, and conduct experiments to evaluate the performance. The results show our system can achieve the above goals and overcome the weakness of blockchain-based UAV systems in SAR scenarios.
blockchain / sharding / unmanned aerial vehicle / search and rescue / blockchain interoperability
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
Kuzlu M, Pipattanasomporn M, Gurses L, Rahman S. Performance analysis of a hyperledger fabric blockchain framework: throughput, latency and scalability. In: Proceedings of 2019 IEEE International Conference on Blockchain (Blockchain). 2019, 536−540 |
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |