ACbot: an IIoT platform for industrial robots

Rui WANG , Xudong MOU , Tianyu WO , Mingyang ZHANG , Yuxin LIU , Tiejun WANG , Pin LIU , Jihong YAN , Xudong LIU

Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (4) : 194203

PDF (5693KB)
Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (4) : 194203 DOI: 10.1007/s11704-024-3449-x
Software
RESEARCH ARTICLE

ACbot: an IIoT platform for industrial robots

Author information +
History +
PDF (5693KB)

Abstract

As the application of Industrial Robots (IRs) scales and related participants increase, the demands for intelligent Operation and Maintenance (O&M) and multi-tenant collaboration rise. Traditional methods could no longer cover the requirements, while the Industrial Internet of Things (IIoT) has been considered a promising solution. However, there’s a lack of IIoT platforms dedicated to IR O&M, including IR maintenance, process optimization, and knowledge sharing. In this context, this paper puts forward the multi-tenant-oriented ACbot platform, which attempts to provide the first holistic IIoT-based solution for O&M of IRs. Based on an information model designed for the IR field, ACbot has implemented an application architecture with resource and microservice management across the cloud and multiple edges. On this basis, we develop four vital applications including real-time monitoring, health management, process optimization, and knowledge graph. We have deployed the ACbot platform in real-world scenarios that contain various participants, types of IRs, and processes. To date, ACbot has been accessed by 10 organizations and managed 60 industrial robots, demonstrating that the platform fulfills our expectations. Furthermore, the application results also showcase its robustness, versatility, and adaptability for developing and hosting intelligent robot applications.

Graphical abstract

Keywords

IIoT platform / industrial robots / cloud-edge collaboration / intelligent applications

Cite this article

Download citation ▾
Rui WANG, Xudong MOU, Tianyu WO, Mingyang ZHANG, Yuxin LIU, Tiejun WANG, Pin LIU, Jihong YAN, Xudong LIU. ACbot: an IIoT platform for industrial robots. Front. Comput. Sci., 2025, 19(4): 194203 DOI:10.1007/s11704-024-3449-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hägele M, Nilsson K, Pires J N, Bischoff R. Industrial robotics. In: Siciliano B, Khatib O, eds. Springer Handbook of Robotics. 2nd ed. Cham: Springer, 2016, 1385−1422

[2]

Borgi T, Hidri A, Neef B, Naceur M S. Data analytics for predictive maintenance of industrial robots. In: Proceedings of the 2017 International Conference on Advanced Systems and Electric Technologies. 2017, 412−417

[3]

Aivaliotis P, Arkouli Z, Georgoulias K, Makris S . Degradation curves integration in physics-based models: towards the predictive maintenance of industrial robots. Robotics and Computer-Integrated Manufacturing, 2021, 71: 102177

[4]

Köksal G, Batmaz İ, Testik M C . A review of data mining applications for quality improvement in manufacturing industry. Expert Systems with Applications, 2011, 38( 10): 13448–13467

[5]

Weichert D, Link P, Stoll A, Rüping S, Ihlenfeldt S, Wrobel S. A review of machine learning for the optimization of production processes. The International Journal of Advanced Manufacturing Technology, 2019, 104(5−8): 1889−1902

[6]

Ding Y, Xu W, Liu Z, Zhou Z, Pham D T . Robotic task oriented knowledge graph for human-robot collaboration in disassembly. Procedia CIRP, 2019, 83: 105–110

[7]

Deng J, Wang T, Wang Z, Zhou J, Cheng L . Research on event logic knowledge graph construction method of robot transmission system fault diagnosis. IEEE Access, 2022, 10: 17656–17673

[8]

McKee G T, Schenker P S. Networked robotics. In: Proceedings of SPIE 4196, Sensor Fusion and Decentralized Control in Robotic Systems III. 2000, 197−209

[9]

Schwager M, Rus D, Slotine J J. Decentralized, adaptive coverage control for networked robots. The International Journal of Robotics Research, 2009, 28(3): 357–375

[10]

Kuffner J. Cloud-enabled humanoid robots. In: Proceedings of the 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids). 2010

[11]

Hu G, Tay W P, Wen Y . Cloud robotics: architecture, challenges and applications. IEEE Network, 2012, 26( 3): 21–28

[12]

Kehoe B, Patil S, Abbeel P, Goldberg K . A survey of research on cloud robotics and automation. IEEE Transactions on Automation Science and Engineering, 2015, 12( 2): 398–409

[13]

Gudi S L K C, Ojha S, Clark J, Johnston B, Williams M A. Fog robotics: an introduction. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2017

[14]

Gudi S L K C, Ojha S, Johnston B, Clark J, Williams M A. Fog robotics for efficient, fluent and robust human-robot interaction. In: Proceedings of the 17th IEEE International Symposium on Network Computing and Applications. 2018, 1−5

[15]

Pujol V C, Dustdar S . Fog robotics-understanding the research challenges. IEEE Internet Computing, 2021, 25( 5): 10–17

[16]

Groshev M, Baldoni G, Cominardi L, de la Oliva A, Gazda R . Edge robotics: are we ready? An experimental evaluation of current vision and future directions. Digital Communications and Networks, 2023, 9( 1): 166–174

[17]

Huang P, Zeng L, Chen X, Luo K, Zhou Z, Yu S . Edge robotics: edge-computing-accelerated multirobot simultaneous localization and mapping. IEEE Internet of Things Journal, 2022, 9( 15): 14087–14102

[18]

Waibel M, Beetz M, Civera J, D’Andrea R, Elfring J, Gálvez-López D, Häussermann K, Janssen R, Montiel J M M, Perzylo A, Schießle B, Tenorth M, Zweigle O, Van De Molengraft R . RoboEarth. IEEE Robotics & Automation Magazine, 2011, 18( 2): 69–82

[19]

Mohanarajah G, Hunziker D, D’Andrea R, Waibel M . Rapyuta: a cloud robotics platform. IEEE Transactions on Automation Science and Engineering, 2015, 12( 2): 481–493

[20]

Arnold L, Jöhnk J, Vogt F, Urbach N . IIoT platforms’ architectural features–a taxonomy and five prevalent archetypes. Electronic Markets, 2022, 32( 2): 927–944

[21]

Schneider S. The industrial internet of things (IIoT): applications and taxonomy. In: Geng H, ed. Internet of Things and Data Analytics Handbook. Hoboken: John Wiley & Sons, Inc., 2017, 41−81

[22]

Li H, Li X, Cheng Q . A fine-grained privacy protection data aggregation scheme for outsourcing smart grid. Frontiers of Computer Science, 2023, 17( 3): 173806

[23]

Zhou C, Damiano N, Whisner B, Reyes M . Industrial internet of things (IIoT) applications in underground coal mines. Mining Engineering, 2017, 69( 12): 50–56

[24]

Maatoug A, Belalem G, Mahmoudi S . A location-based fog computing optimization of energy management in smart buildings: DEVS modeling and design of connected objects. Frontiers of Computer Science, 2023, 17( 2): 172501

[25]

Han Y, Zhang C J, Wang L, Zhang Y C . Industrial IoT for intelligent steelmaking with converter mouth flame spectrum information processed by deep learning. IEEE Transactions on Industrial Informatics, 2020, 16( 4): 2640–2650

[26]

Wang R, Mou X, Sun J, Liu P, Guo X, Wo T, Liu X. Cloud-edge collaborative industrial robotic intelligent service platform. In: Proceedings of 2020 IEEE International Conference on Joint Cloud Computing. 2020, 71−77

[27]

Carvalho T P, Soares F A A M N, Vita R, Francisco R D P, Basto J P, Alcalá S G S . A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 2019, 137: 106024

[28]

Silvestri L, Forcina A, Introna V, Santolamazza A, Cesarotti V . Maintenance transformation through industry 4. 0 technologies: a systematic literature review. Computers in Industry, 2020, 123: 103335

[29]

Belhadi A, Zkik K, Cherrafi A, Yusof S M, El fezazi S . Understanding big data analytics for manufacturing processes: insights from literature review and multiple case studies. Computers & Industrial Engineering, 2019, 137: 106099

[30]

Qin W, Chen S, Peng M. Recent advances in industrial internet: insights and challenges. Digital Communications and Networks, 2020, 6(1): 1–13

[31]

Hermann M, Pentek T, Otto B. Design principles for industrie 4.0 scenarios: a literature review. Dortmund: Technische Universität Dortmund, 2015, 45

[32]

Boyes H, Hallaq B, Cunningham J, Watson T . The industrial internet of things (IIoT): an analysis framework. Computers in Industry, 2018, 101: 1–12

[33]

Sisinni E, Saifullah A, Han S, Jennehag U, Gidlund M . Industrial internet of things: challenges, opportunities, and directions. IEEE Transactions on Industrial Informatics, 2018, 14( 11): 4724–4734

[34]

Weyrich M, Ebert C . Reference architectures for the internet of things. IEEE Software, 2016, 33( 1): 112–116

[35]

Fathoni H, Yang C T, Chang C H, Huang C Y. Performance comparison of lightweight kubernetes in edge devices. In: Proceedings of the 16th International Symposium on Pervasive Systems, Algorithms and Networks. 2019, 304−309

[36]

Tao Z, Xia Q, Hao Z, Li C, Ma L, Yi S, Li Q . A survey of virtual machine management in edge computing. Proceedings of the IEEE, 2019, 107( 8): 1482–1499

[37]

Fogli M, Kudla T, Musters B, Pingen G, Van den Broek C, Bastiaansen H, Suri N, Webb S. Performance evaluation of kubernetes distributions (K8s, K3s, KubeEdge) in an adaptive and federated cloud infrastructure for disadvantaged tactical networks. In: Proceedings of 2021 International Conference on Military Communication and Information Systems (ICMCIS). 2021, 1−7

[38]

Bauer M, Bui N, De Loof J, Magerkurth C, Nettsträter A, Stefa J, Walewski J W. IoT reference model. In: Bassi A, Bauer M, Fiedler M, Kramp T, Kranenburg R, Lange S, Meissner S, eds. Enabling Things to Talk: Designing IoT Solutions with the IoT Architectural Reference Model. Berlin: Springer, 2013, 113−162

[39]

Yu S, Huang Y, Du T, Teng Y . The proposal of a modeling methodology for an industrial internet information model. PeerJ Computer Science, 2022, 8: e1150

[40]

Wang T, Mou X, Hu J, Wang R, Wo T. Two-stage scheduling of stream computing for industrial cloud-edge collaboration. In: Proceedings of 2022 IEEE International Conference on Joint Cloud Computing (JCC). 2022, 57−64

[41]

Khoshnevis S . A search-based identification of variable microservices for enterprise SaaS. Frontiers of Computer Science, 2023, 17( 3): 173208

[42]

Dias J P, Restivo A, Ferreira H S . Designing and constructing internet-of-things systems: an overview of the ecosystem. Internet of Things, 2022, 19: 100529

[43]

Liang W, Zheng M, Zhang J, Shi H, Yu H, Yang Y, Liu S, Yang W, Zhao X . WIA-FA and its applications to digital factory: a wireless network solution for factory automation. Proceedings of the IEEE, 2019, 107( 6): 1053–1073

[44]

Li Q, Yu Z, Xu H, Guo B . Human-machine interactive streaming anomaly detection by online self-adaptive forest. Frontiers of Computer Science, 2023, 17( 2): 172317

[45]

Kieu T, Yang B, Guo C, Jensen C S. Outlier detection for time series with recurrent autoencoder ensembles. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019, 2725−2732

[46]

Mou X, Wang R, Wang T, Sun J, Li B, Wo T, Liu X. Deep autoencoding one-class time series anomaly detection. In: Proceedings of 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2023, 1−5

[47]

Wang R, Liu C, Mou X, Gao K, Guo X, Liu P, Wo T, Liu X. Deep contrastive one-class time series anomaly detection. In: Proceedings of the International Conference on Data Mining. 2023, 694−702

[48]

Lei Y, Li N, Guo L, Li N, Yan T, Lin J . Machinery health prognostics: a systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal Processing, 2018, 104: 799–834

[49]

Har-Peled S, Raichel B . The fréchet distance revisited and extended. ACM Transactions on Algorithms, 2014, 10( 1): 3

[50]

Zhang M, Yan J . A data-driven method for optimizing the energy consumption of industrial robots. Journal of Cleaner Production, 2021, 285: 124862

[51]

Yan J, Zhang M . A transfer-learning based energy consumption modeling method for industrial robots. Journal of Cleaner Production, 2021, 325: 129299

[52]

Qiang J, Zhang F, Li Y, Yuan Y, Zhu Y, Wu X . Unsupervised statistical text simplification using pre-trained language modeling for initialization. Frontiers of Computer Science, 2023, 17( 1): 171303

[53]

Cardellini V, Grassi V, Lo Presti F, Nardelli M. On QoS-aware scheduling of data stream applications over fog computing infrastructures. In: Proceedings of 2015 IEEE Symposium on Computers and Communication (ISCC). 2015, 271−276

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5693KB)

Supplementary files

FCS-23449-OF-RW_suppl_1

1492

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/