SCREEN: predicting single-cell gene expression perturbation responses via optimal transport

Haixin WANG , Yunhan WANG , Qun JIANG , Yan ZHANG , Shengquan CHEN

Front. Comput. Sci. ›› 2024, Vol. 18 ›› Issue (3) : 183909

PDF (3748KB)
Front. Comput. Sci. ›› 2024, Vol. 18 ›› Issue (3) : 183909 DOI: 10.1007/s11704-024-31014-9
Code & Data
LETTER

SCREEN: predicting single-cell gene expression perturbation responses via optimal transport

Author information +
History +
PDF (3748KB)

Graphical abstract

Cite this article

Download citation ▾
Haixin WANG, Yunhan WANG, Qun JIANG, Yan ZHANG, Shengquan CHEN. SCREEN: predicting single-cell gene expression perturbation responses via optimal transport. Front. Comput. Sci., 2024, 18(3): 183909 DOI:10.1007/s11704-024-31014-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lotfollahi M, Wolf F A, Theis F J . scGen predicts single-cell perturbation responses. Nature Methods, 2019, 16( 8): 715–721

[2]

Ji Y, Lotfollahi M, Wolf F A, Theis F J . Machine learning for perturbational single-cell omics. Cell Systems, 2021, 12( 6): 522–537

[3]

Wei X, Dong J, Wang F . scPreGAN, a deep generative model for predicting the response of single-cell expression to perturbation. Bioinformatics, 2022, 38( 13): 3377–3384

[4]

He K, Chen X, Xie S, Li Y, Dollár P, Girshick R. Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, 15979–15988

[5]

Makkuva A V, Taghvaei A, Lee J D, Oh S. Optimal transport mapping via input convex neural networks. In: Proceedings of the 37th International Conference on Machine Learning. 2020, 619

[6]

Kang H M, Subramaniam M, Targ S, Nguyen M, Maliskova L, McCarthy E, Wan E, Wong S, Byrnes L, Lanata C M, Gate R E, Mostafavi S, Marson A, Zaitlen N, Criswell L A, Ye C J . Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nature Biotechnology, 2018, 36( 1): 89–94

[7]

Haber A L, Biton M, Rogel N, Herbst R H, Shekhar K, Smillie C, Burgin G, Delorey T M, Howitt M R, Katz Y, Tirosh I, Beyaz S, Dionne D, Zhang M, Raychowdhury R, Garrett W S, Rozenblatt-Rosen O, Shi H N, Yilmaz O, Xavier R J, Regev A . A single-cell survey of the small intestinal epithelium. Nature, 2017, 551( 7680): 333–339

[8]

Green T D, Peidli S, Shen C, Gross T, Min J, Garda S, Taylor-King J P, Marks D S, Luna A, Blüthgen N, Sander C. scPerturb: information resource for harmonized single-cell perturbation data. In: Proceedings of the 6th Conference on Neural Information Processing Systems. 2022

[9]

Chen S, Wang R, Long W, Jiang R . ASTER: accurately estimating the number of cell types in single-cell chromatin accessibility data. Bioinformatics, 2023, 39( 1): btac842

[10]

Wang J, Tao H, Li H, Bo X, Chen H . 3D genomic organization in cancers. Quantitative Biology, 2023, 11( 2): 109–121

[11]

Gao Z, Chen X, Li Z, Cui X, Jiang Q, Li K, Chen S, Jiang R. scEpiTools: a database to comprehensively interrogate analytic tools for single-cell epigenomic data. Journal of Genetics and Genomics, 2023, doi: 10.1016/j.jgg.2023.09.011

[12]

Chen S, Hua K, Cui H, Jiang R . VPAC: variational projection for accurate clustering of single-cell transcriptomic data. BMC Bioinformatics, 2019, 20: 139-151

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3748KB)

Supplementary files

Highlights

Supplementary materials

2006

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/