SCREEN: predicting single-cell gene expression perturbation responses via optimal transport

Haixin WANG, Yunhan WANG, Qun JIANG, Yan ZHANG, Shengquan CHEN

PDF(3748 KB)
PDF(3748 KB)
Front. Comput. Sci. ›› 2024, Vol. 18 ›› Issue (3) : 183909. DOI: 10.1007/s11704-024-31014-9
Interdisciplinary
LETTER

SCREEN: predicting single-cell gene expression perturbation responses via optimal transport

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Haixin WANG, Yunhan WANG, Qun JIANG, Yan ZHANG, Shengquan CHEN. SCREEN: predicting single-cell gene expression perturbation responses via optimal transport. Front. Comput. Sci., 2024, 18(3): 183909 https://doi.org/10.1007/s11704-024-31014-9

References

[1]
Lotfollahi M, Wolf F A, Theis F J . scGen predicts single-cell perturbation responses. Nature Methods, 2019, 16( 8): 715–721
[2]
Ji Y, Lotfollahi M, Wolf F A, Theis F J . Machine learning for perturbational single-cell omics. Cell Systems, 2021, 12( 6): 522–537
[3]
Wei X, Dong J, Wang F . scPreGAN, a deep generative model for predicting the response of single-cell expression to perturbation. Bioinformatics, 2022, 38( 13): 3377–3384
[4]
He K, Chen X, Xie S, Li Y, Dollár P, Girshick R. Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, 15979–15988
[5]
Makkuva A V, Taghvaei A, Lee J D, Oh S. Optimal transport mapping via input convex neural networks. In: Proceedings of the 37th International Conference on Machine Learning. 2020, 619
[6]
Kang H M, Subramaniam M, Targ S, Nguyen M, Maliskova L, McCarthy E, Wan E, Wong S, Byrnes L, Lanata C M, Gate R E, Mostafavi S, Marson A, Zaitlen N, Criswell L A, Ye C J . Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nature Biotechnology, 2018, 36( 1): 89–94
[7]
Haber A L, Biton M, Rogel N, Herbst R H, Shekhar K, Smillie C, Burgin G, Delorey T M, Howitt M R, Katz Y, Tirosh I, Beyaz S, Dionne D, Zhang M, Raychowdhury R, Garrett W S, Rozenblatt-Rosen O, Shi H N, Yilmaz O, Xavier R J, Regev A . A single-cell survey of the small intestinal epithelium. Nature, 2017, 551( 7680): 333–339
[8]
Green T D, Peidli S, Shen C, Gross T, Min J, Garda S, Taylor-King J P, Marks D S, Luna A, Blüthgen N, Sander C. scPerturb: information resource for harmonized single-cell perturbation data. In: Proceedings of the 6th Conference on Neural Information Processing Systems. 2022
[9]
Chen S, Wang R, Long W, Jiang R . ASTER: accurately estimating the number of cell types in single-cell chromatin accessibility data. Bioinformatics, 2023, 39( 1): btac842
[10]
Wang J, Tao H, Li H, Bo X, Chen H . 3D genomic organization in cancers. Quantitative Biology, 2023, 11( 2): 109–121
[11]
Gao Z, Chen X, Li Z, Cui X, Jiang Q, Li K, Chen S, Jiang R. scEpiTools: a database to comprehensively interrogate analytic tools for single-cell epigenomic data. Journal of Genetics and Genomics, 2023, doi: 10.1016/j.jgg.2023.09.011
[12]
Chen S, Hua K, Cui H, Jiang R . VPAC: variational projection for accurate clustering of single-cell transcriptomic data. BMC Bioinformatics, 2019, 20: 139-151

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62203236) and the Fundamental Research Funds for the Central Universities, Nankai University (63231137).

Competing interests

The authors declare that they have no competing interests or financial conflicts to disclose.

Electronic supplementary material

Supplementary material is available in the online version of this article at journal.hep.com.cn and link.springer.com.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3748 KB)

Accesses

Citations

Detail

Sections
Recommended

/