Revisiting multi-dimensional classification from a dimension-wise perspective
Yi SHI , Hanjia YE , Dongliang MAN , Xiaoxu HAN , Dechuan ZHAN , Yuan JIANG
Front. Comput. Sci. ›› 2025, Vol. 19 ›› Issue (1) : 191304
Revisiting multi-dimensional classification from a dimension-wise perspective
Real-world objects exhibit intricate semantic properties that can be characterized from a multitude of perspectives, which necessitates the development of a model capable of discerning multiple patterns within data, while concurrently predicting several Labeling Dimensions (LDs) — a task known as Multi-dimensional Classification (MDC). While the class imbalance issue has been extensively investigated within the multi-class paradigm, its study in the MDC context has been limited due to the imbalance shift phenomenon. A sample’s classification as a minor or major class instance becomes ambiguous when it belongs to a minor class in one LD and a major class in another. Previous MDC methodologies predominantly emphasized instance-wise criteria, neglecting prediction capabilities from a dimension aspect, i.e., the average classification performance across LDs. We assert the significance of dimension-wise metrics in real-world MDC applications and introduce two such metrics. Furthermore, we observe imbalanced class distributions within each LD and propose a novel Imbalance-Aware fusion Model (IMAM) for addressing the MDC problem. Specifically, we first decompose the task into multiple multi-class classification problems, creating imbalance-aware deep models for each LD separately. This straightforward method performs well across LDs without sacrificing performance in instance-wise criteria. Subsequently, we employ LD-wise models as multiple teachers and transfer their knowledge across all LDs to a unified student model. Experimental results on several real-world datasets demonstrate that our IMAM approach excels in both instance-wise evaluations and the proposed dimension-wise metrics.
multi-dimensional classification / dimension perspective / class imbalance learning
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
Gotmare A, Keskar N S, Xiong C, Socher R. A closer look at deep learning heuristics: learning rate restarts, warmup and distillation. In: Proceedings of the 37th International Conference on Learning Representations. 2019 |
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |