BVDFed: Byzantine-resilient and verifiable aggregation for differentially private federated learning
Xinwen GAO , Shaojing FU , Lin LIU , Yuchuan LUO
Front. Comput. Sci. ›› 2024, Vol. 18 ›› Issue (5) : 185810
BVDFed: Byzantine-resilient and verifiable aggregation for differentially private federated learning
Federated Learning (FL) has emerged as a powerful technology designed for collaborative training between multiple clients and a server while maintaining data privacy of clients. To enhance the privacy in FL, Differentially Private Federated Learning (DPFL) has gradually become one of the most effective approaches. As DPFL operates in the distributed settings, there exist potential malicious adversaries who manipulate some clients and the aggregation server to produce malicious parameters and disturb the learning model. However, existing aggregation protocols for DPFL concern either the existence of some corrupted clients (Byzantines) or the corrupted server. Such protocols are limited to eliminate the effects of corrupted clients and server when both are in existence simultaneously due to the complicated threat model. In this paper, we elaborate such adversarial threat model and propose BVDFed. To our best knowledge, it is the first Byzantine-resilient and Verifiable aggregation for Differentially private FEDerated learning. In specific, we propose Differentially Private Federated Averaging algorithm (DPFA) as our primary workflow of BVDFed, which is more lightweight and easily portable than traditional DPFL algorithm. We then introduce Loss Score to indicate the trustworthiness of disguised gradients in DPFL. Based on Loss Score, we propose an aggregation rule DPLoss to eliminate faulty gradients from Byzantine clients during server aggregation while preserving the privacy of clients’ data. Additionally, we design a secure verification scheme DPVeri that are compatible with DPFA and DPLoss to support the honest clients in verifying the integrity of received aggregated results. And DPVeri also provides resistance to collusion attacks with no more than t participants for our aggregation. Theoretical analysis and experimental results demonstrate our aggregation to be feasible and effective in practice.
federated learning / differential private / verifiable aggregation / Byzantine fault-tolerance
| [1] |
McMahan B, Moore E, Ramage D, Hampson S, Arcas B A Y. Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. 2017, 1273−1282 |
| [2] |
|
| [3] |
Zhao B, Mopuri K R, Bilen H. iDLG: improved deep leakage from gradients. 2020, arXiv preprint arXiv: 2001.02610 |
| [4] |
|
| [5] |
|
| [6] |
Hitaj B, Ateniese G, Perez-Cruz F. Deep models under the GAN: Information leakage from collaborative deep learning. In: Proceedings of 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017, 603−618 |
| [7] |
|
| [8] |
Shejwalkar V, Houmansadr A. Manipulating the byzantine: optimizing model poisoning attacks and defenses for federated learning. In: Proceedings of the 28th Annual Network and Distributed System Security Symposium. 2021 |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Xiang M, Su L. β-stochastic sign SGD: a byzantine resilient and differentially private gradient compressor for federated learning. 2022, arXiv preprint arXiv: 2210.00665 |
| [14] |
|
| [15] |
Abadi M, Chu A, Goodfellow I, McMahan H B, Mironov I, Talwar K, Zhang L. Deep learning with differential privacy. In: Proceedings of 2016 ACM SIGSAC Conference on Computer and Communications Security. 2016, 308−318 |
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
Dwork C, McSherry F, Nissim K, Smith A. Calibrating noise to sensitivity in private data analysis. In: Proceedings of the 3rd Theory of Cryptography Conference. 2006, 265−284 |
| [23] |
|
| [24] |
Krohn M N, Freedman M J, Mazieres D. On-the-fly verification of rateless erasure codes for efficient content distribution. In: Proceedings of IEEE Symposium on Security and Privacy, 2004, 226−240 |
| [25] |
|
| [26] |
|
| [27] |
Lyu L, Yu H, Ma X, Chen C, Sun L, Zhao J, Yang Q, Yu P S. Privacy and robustness in federated learning: attacks and defenses. IEEE Transactions on Neural Networks and Learning Systems, 2022, doi: 10.1109/TNNLS.2022.3216981. |
| [28] |
|
| [29] |
|
| [30] |
Rastogi V, Nath S. Differentially private aggregation of distributed time-series with transformation and encryption. In: Proceedings of 2010 ACM SIGMOD International Conference on Management of Data. 2010, 735−746 |
| [31] |
Agarwal N, Suresh A T, Yu F, Kumar S, McMahan H B. cpSGD: communication-efficient and differentially-private distributed sgd. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018, 7575−7586 |
| [32] |
Duchi J C, Jordan M I, Wainwright M J. Local privacy and statistical minimax rates. In: Proceedings of the 54th IEEE Annual Symposium on Foundations of Computer Science. 2013, 429−438 |
| [33] |
|
| [34] |
|
| [35] |
Xie C, Koyejo S, Gupta I. Zeno: distributed stochastic gradient descent with suspicion-based fault-tolerance. In: Proceedings of the 36th International Conference on Machine Learning. 2019, 6893−6901 |
| [36] |
Wilcox-O’Hearn Z. Bitcoin privacy technologies - zerocash and confidential transactions. weusecoins.com/bitcoin-privacy-technologies-zerocash-confidential-transactions/. 2015 |
| [37] |
Truex S, Liu L, Chow K H, Gursoy M E, Wei W. LDP-fed: federated learning with local differential privacy. In: Proceedings of the 3rd ACM International Workshop on Edge Systems, Analytics and Networking. 2020, 61−66 |
| [38] |
|
| [39] |
|
| [40] |
Blanchard P, Mhamdi E M E, Guerraoui R, Stainer J. Machine learning with adversaries: Byzantine tolerant gradient descent. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 118−128 |
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
Ma Z, Ma J, Miao Y, Li Y, Deng R H. Shieldfl: mitigating model poisoning attacks in privacy-preserving federated learning. IEEE Transactions on Information Forensics and Security, 2022, 17: 1639–1654 |
| [45] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |