Generating empathetic responses through emotion tracking and constraint guidance

Jing LI, Donghong HAN, Zhishuai GUO, Baiyou QIAO, Gang WU

PDF(1180 KB)
PDF(1180 KB)
Front. Comput. Sci. ›› 2024, Vol. 18 ›› Issue (2) : 182330. DOI: 10.1007/s11704-023-2792-7
Artificial Intelligence
LETTER

Generating empathetic responses through emotion tracking and constraint guidance

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Jing LI, Donghong HAN, Zhishuai GUO, Baiyou QIAO, Gang WU. Generating empathetic responses through emotion tracking and constraint guidance. Front. Comput. Sci., 2024, 18(2): 182330 https://doi.org/10.1007/s11704-023-2792-7

References

[1]
Serban I V, Sordoni A, Bengio Y, Courville A, Pineau J. Building end-to-end dialogue systems using generative hierarchical neural network models. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence. 2016, 3776−3784
[2]
Levine S. Motor skill learning with local trajectory methods. Stanford University, Dissertation, 2014
[3]
Majumder N, Hong P, Peng S, Lu J, Ghosal D, Gelbukh A, Mihalcea R, Poria S. MIME: mimicking emotions for empathetic response generation. In: Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. 2020, 8968−8979
[4]
Li Q, Chen H, Ren Z, Ren P, Tu Z, Chen Z. EmpDG: multi-resolution interactive empathetic dialogue generation. In: Proceedings of the 28th International Conference on Computational Linguistics. 2020, 4454−4466
[5]
Li Q, Li P, Ren Z, Ren P, Chen Z. Knowledge bridging for empathetic dialogue generation. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence. 2022, 10993−11001
[6]
Chen M Y, Li S, Yang Y. EmpHi: Generating empathetic responses with human-like intents. In: Proceedings of 2022 Conference of the North American Chapter of Association for Computational Linguistics: Human Language Technologies. 2022, 1063−1074
[7]
Li J, Galley M, Brockett C, Gao J, Dolan B. A diversity-promoting objective function for neural conversation models. In: Proceedings of 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016, 110−119
[8]
Zhang T, Kishore V, Wu F, Weinberger K Q, Artzi Y. BERTScore: evaluating text generation with BERT. In: Proceedings of the 8th International Conference on Learning Representations. 2020
[9]
Rashkin H, Smith E M, Li M, Boureau Y L. Towards empathetic open-domain conversation models: a new benchmark and dataset. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019, 5370−5381

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61672144, 61872072).

Competing interests

The authors declare that they have no competing interests or financial conflicts to disclose.

Supporting information

The supporting information is available online at journal.hep.com.cn and link.springer.com.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(1180 KB)

Accesses

Citations

Detail

Sections
Recommended

/