Generating empathetic responses through emotion tracking and constraint guidance
Jing LI, Donghong HAN, Zhishuai GUO, Baiyou QIAO, Gang WU
Generating empathetic responses through emotion tracking and constraint guidance
[1] |
Serban I V, Sordoni A, Bengio Y, Courville A, Pineau J. Building end-to-end dialogue systems using generative hierarchical neural network models. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence. 2016, 3776−3784
|
[2] |
Levine S. Motor skill learning with local trajectory methods. Stanford University, Dissertation, 2014
|
[3] |
Majumder N, Hong P, Peng S, Lu J, Ghosal D, Gelbukh A, Mihalcea R, Poria S. MIME: mimicking emotions for empathetic response generation. In: Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. 2020, 8968−8979
|
[4] |
Li Q, Chen H, Ren Z, Ren P, Tu Z, Chen Z. EmpDG: multi-resolution interactive empathetic dialogue generation. In: Proceedings of the 28th International Conference on Computational Linguistics. 2020, 4454−4466
|
[5] |
Li Q, Li P, Ren Z, Ren P, Chen Z. Knowledge bridging for empathetic dialogue generation. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence. 2022, 10993−11001
|
[6] |
Chen M Y, Li S, Yang Y. EmpHi: Generating empathetic responses with human-like intents. In: Proceedings of 2022 Conference of the North American Chapter of Association for Computational Linguistics: Human Language Technologies. 2022, 1063−1074
|
[7] |
Li J, Galley M, Brockett C, Gao J, Dolan B. A diversity-promoting objective function for neural conversation models. In: Proceedings of 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016, 110−119
|
[8] |
Zhang T, Kishore V, Wu F, Weinberger K Q, Artzi Y. BERTScore: evaluating text generation with BERT. In: Proceedings of the 8th International Conference on Learning Representations. 2020
|
[9] |
Rashkin H, Smith E M, Li M, Boureau Y L. Towards empathetic open-domain conversation models: a new benchmark and dataset. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019, 5370−5381
|
/
〈 | 〉 |