Aspect-level sentiment analysis based on semantic heterogeneous graph convolutional network
Yufei ZENG , Zhixin LI , Zhenbin CHEN , Huifang MA
Front. Comput. Sci. ›› 2023, Vol. 17 ›› Issue (6) : 176340
Aspect-level sentiment analysis based on semantic heterogeneous graph convolutional network
The deep learning methods based on syntactic dependency tree have achieved great success on Aspect-based Sentiment Analysis (ABSA). However, the accuracy of the dependency parser cannot be determined, which may keep aspect words away from its related opinion words in a dependency tree. Moreover, few models incorporate external affective knowledge for ABSA. Based on this, we propose a novel architecture to tackle the above two limitations, while fills up the gap in applying heterogeneous graphs convolution network to ABSA. Specially, we employ affective knowledge as an sentiment node to augment the representation of words. Then, linking sentiment node which have different attributes with word node through a specific edge to form a heterogeneous graph based on dependency tree. Finally, we design a multi-level semantic heterogeneous graph convolution network (Semantic-HGCN) to encode the heterogeneous graph for sentiment prediction. Extensive experiments are conducted on the datasets SemEval 2014 Task 4, SemEval 2015 task 12, SemEval 2016 task 5 and ACL 14 Twitter. The experimental results show that our method achieves the state-of-the-art performance.
heterogeneous graph convolution network / multi-head attention network / aspect-based sentiment analysis / deep learning / affective knowledge
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
Cambria E, Poria S, Hazarika D, Kwok K. SenticNet 5: discovering conceptual primitives for sentiment analysis by means of context embeddings. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence and 30th Innovative Applications of Artificial Intelligence Conference and 8th AAAI Symposium on Educational Advances in Artificial Intelligence. 2018, 219 |
| [12] |
Ma D, Li S, Zhang X, Wang H. Interactive attention networks for aspect-level sentiment classification. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017, 4068−4074 |
| [13] |
|
| [14] |
|
| [15] |
Tay Y, Tuan L A, Hui S C. Learning to attend via word-aspect associative fusion for aspect-based sentiment analysis. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence and 30th Innovative Applications of Artificial Intelligence Conference and 8th AAAI Symposium on Educational Advances in Artificial Intelligence. 2018, 731 |
| [16] |
Yao L, Mao C, Luo Y. Graph convolutional networks for text classification. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence and 31st Innovative Applications of Artificial Intelligence Conference and 9th AAAI Symposium on Educational Advances in Artificial Intelligence. 2019, 905 |
| [17] |
|
| [18] |
|
| [19] |
Xu L, Bing L, Lu W, Huang F. Aspect sentiment classification with aspect-specific opinion spans. In: Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. 2020, 3561−3567 |
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
Ma Y, Peng H, Cambria E. Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence and 30th Innovative Applications of Artificial Intelligence Conference and 8th AAAI Symposium on Educational Advances in Artificial Intelligence. 2018, 721 |
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
Kirange D, Deshmukh R R, Kirange M. Aspect based sentiment analysis semeval-2014 task 4. Asian Journal of Computer Science and Information Technology, 2014, 4(8): 72−75 |
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
Chen D, Manning C D. A fast and accurate dependency parser using neural networks. In: Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. 2014, 740−750 |
| [57] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |