An efficient graph data compression model based on the germ quotient set structure

Dawei WANG , Wanqiu CUI

Front. Comput. Sci. ›› 2022, Vol. 16 ›› Issue (6) : 166617

PDF (1070KB)
Front. Comput. Sci. ›› 2022, Vol. 16 ›› Issue (6) : 166617 DOI: 10.1007/s11704-022-1489-7
Information Systems
LETTER

An efficient graph data compression model based on the germ quotient set structure

Author information +
History +
PDF (1070KB)

Graphical abstract

Cite this article

Download citation ▾
Dawei WANG, Wanqiu CUI. An efficient graph data compression model based on the germ quotient set structure. Front. Comput. Sci., 2022, 16(6): 166617 DOI:10.1007/s11704-022-1489-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Park C S , Kaye B K . The tweet goes on: interconnection of twitter opinion leadership, network size, and civic engagement. Computers in Human Behavior, 2017, 69: 174– 180

[2]

Delgosha P , Anantharam V . Universal lossless compression of graphical data. IEEE Transactions on Information Theory, 2020, 66( 11): 6962– 6976

[3]

Xue Z , Du J , Du D , Lyu S . Deep low-rank subspace ensemble for multi-view clustering. Information Science, 2019, 482: 210– 227

[4]

Lu F , Kothari N , Feng X , Zhang L . Equivalence classes in matching covered graphs. Discrete Mathematics, 2020, 343( 8): 111945

[5]

Robinson I Webber J Eifrem E. Graph Databases. 2nd ed. California: O’Reilly Media Inc, 2015

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1070KB)

Supplementary files

Highlights

1309

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/