A Bayesian matrix factorization model for dynamic user embedding in recommender system

Kaihan ZHANG , Zhiqiang WANG , Jiye LIANG , Xingwang ZHAO

Front. Comput. Sci. ›› 2022, Vol. 16 ›› Issue (5) : 165346

PDF (1318KB)
Front. Comput. Sci. ›› 2022, Vol. 16 ›› Issue (5) : 165346 DOI: 10.1007/s11704-022-1213-7
Artificial Intelligence
LETTER

A Bayesian matrix factorization model for dynamic user embedding in recommender system

Author information +
History +
PDF (1318KB)

Graphical abstract

Cite this article

Download citation ▾
Kaihan ZHANG, Zhiqiang WANG, Jiye LIANG, Xingwang ZHAO. A Bayesian matrix factorization model for dynamic user embedding in recommender system. Front. Comput. Sci., 2022, 16(5): 165346 DOI:10.1007/s11704-022-1213-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao Z Y , Zhou H , Li C , Tang J , Zeng Q T . Deepemlan: deep embedding learning for attributed networks. Information Sciences, 2021, 543: 382– 397

[2]

Koren Y. Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2009, 447– 456

[3]

Zhang C Y, Wang K, Yu H K, Sun J L, Lim E P. Latent factor transition for dynamic collaborative filtering. In: Proceedings of 2014 SIAM International Conference on Data Mining. 2014, 452– 460

[4]

Guo G B, Zhu F D, Qu S L, Wang X W. PCCF: periodic and continual temporal co-factorization for recommender systems. Information Sciences, 2018, 436: 56– 73

[5]

He X N, Deng K, Wang X, Li Y, Zhang Y D, Wang M. LightGCN: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020, 639– 648

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1318KB)

Supplementary files

Highlights

1192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/