TransRec++: Translation-based sequential recommendation with heterogeneous feedback

Zhuo-Xin ZHAN, Ming-Kai HE, Wei-Ke PAN, Zhong MING

PDF(1048 KB)
PDF(1048 KB)
Front. Comput. Sci. ›› 2022, Vol. 16 ›› Issue (2) : 162615. DOI: 10.1007/s11704-022-1184-8
Information Systems
LETTER

TransRec++: Translation-based sequential recommendation with heterogeneous feedback

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Zhuo-Xin ZHAN, Ming-Kai HE, Wei-Ke PAN, Zhong MING. TransRec++: Translation-based sequential recommendation with heterogeneous feedback. Front. Comput. Sci., 2022, 16(2): 162615 https://doi.org/10.1007/s11704-022-1184-8

References

[1]
He R N, Kang W C, McAuley J. Translation-based recommendation. In: Proceedings of the 17th ACM Conference on Recommender Systems. 2017, 161– 169
[2]
Peng X G, Chen Y F, Duan Y C, Pan W K, Ming Z. RBPR: role-based Bayesian personalized ranking for heterogeneous one-class collaborative filtering. In: Proceedings of the 24th ACM Conference on User Modeling, Adaptation and Personalisation (Extended Proceedings). 2016
[3]
Pan W K , Yang Q , Cai W L , Chen Y F , Zhang Q , Peng X G , Ming Z . Transfer to rank for heterogeneous one-class collaborative filtering. ACM Transactions on Information Systems, 2019, 37( 1): 10–
[4]
Rendle S, Freudenthaler C, Schmidt-Thieme L. Factorizing personalized Markov chains for next-basket recommendation. In: Proceedings of the 19th International Conference on World Wide Web. 2010, 811– 820
[5]
He R N, McAuley J. Fusing similarity models with Markov chains for sparse sequential recommendation. In: Proceedings of 16th International Conference on Data Mining. 2016, 191– 200
[6]
Zhou M Z, Ding Z Y, Tang J L, Yin D W. Micro behaviors: a new perspective in e-commerce recommender systems. In: Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 2018, 727– 735
[7]
Li Z, Zhao H K, Liu Q, Huang Z Y, Mei T, Chen E H. Learning from history and present: Next-item recommendation via discriminatively exploiting user behaviors. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018, 1734−1743

Acknowledgements

We thank the support of National Natural Science Foundation of China (Grant Nos. 62172283 and 61836005).

Supporting Information

The supporting information is available online at journal. hep. com. cn and link. springer. com.

RIGHTS & PERMISSIONS

2021 Higher Education Press 2021
AI Summary AI Mindmap
PDF(1048 KB)

Accesses

Citations

Detail

Sections
Recommended

/